54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wound healing - A literature review.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regeneration and tissue repair processes consist of a sequence of molecular and cellular events which occur after the onset of a tissue lesion in order to restore the damaged tissue. The exsudative, proliferative, and extracellular matrix remodeling phases are sequential events that occur through the integration of dynamic processes involving soluble mediators, blood cells, and parenchymal cells. Exsudative phenomena that take place after injury contribute to the development of tissue edema. The proliferative stage seeks to reduce the area of tissue injury by contracting myofibroblasts and fibroplasia. At this stage, angiogenesis and reepithelialization processes can still be observed. Endothelial cells are able to differentiate into mesenchymal components, and this difference appears to be finely orchestrated by a set of signaling proteins that have been studied in the literature. This pathway is known as Hedgehog. The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Wound healing--aiming for perfect skin regeneration.

          P. Martin (1997)
          The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation in wound repair: molecular and cellular mechanisms.

            In post-natal life the inflammatory response is an inevitable consequence of tissue injury. Experimental studies established the dogma that inflammation is essential to the establishment of cutaneous homeostasis following injury, and in recent years information about specific subsets of inflammatory cell lineages and the cytokine network orchestrating inflammation associated with tissue repair has increased. Recently, this dogma has been challenged, and reports have raised questions on the validity of the essential prerequisite of inflammation for efficient tissue repair. Indeed, in experimental models of repair, inflammation has been shown to delay healing and to result in increased scarring. Furthermore, chronic inflammation, a hallmark of the non-healing wound, predisposes tissue to cancer development. Thus, a more detailed understanding in mechanisms controlling the inflammatory response during repair and how inflammation directs the outcome of the healing process will serve as a significant milestone in the therapy of pathological tissue repair. In this paper, we review cellular and molecular mechanisms controlling inflammation in cutaneous tissue repair and provide a rationale for targeting the inflammatory phase in order to modulate the outcome of the healing response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammatory processes in muscle injury and repair.

              Modified muscle use or injury can produce a stereotypic inflammatory response in which neutrophils rapidly invade, followed by macrophages. This inflammatory response coincides with muscle repair, regeneration, and growth, which involve activation and proliferation of satellite cells, followed by their terminal differentiation. Recent investigations have begun to explore the relationship between inflammatory cell functions and skeletal muscle injury and repair by using genetically modified animal models, antibody depletions of specific inflammatory cell populations, or expression profiling of inflamed muscle after injury. These studies have contributed to a complex picture in which inflammatory cells promote both injury and repair, through the combined actions of free radicals, growth factors, and chemokines. In this review, recent discoveries concerning the interactions between skeletal muscle and inflammatory cells are presented. New findings clearly show a role for neutrophils in promoting muscle damage soon after muscle injury or modified use. No direct evidence is yet available to show that neutrophils play a beneficial role in muscle repair or regeneration. Macrophages have also been shown capable of promoting muscle damage in vivo and in vitro through the release of free radicals, although other findings indicate that they may also play a role in muscle repair and regeneration through growth factors and cytokine-mediated signaling. However, this role for macrophages in muscle regeneration is still not definitive; other cells present in muscle can also produce the potentially regenerative factors, and it remains to be proven whether macrophage-derived factors are essential for muscle repair or regeneration in vivo. New evidence also shows that muscle cells can release positive and negative regulators of inflammatory cell invasion, and thereby play an active role in modulating the inflammatory process. In particular, muscle-derived nitric oxide can inhibit inflammatory cell invasion of healthy muscle and protect muscle from lysis by inflammatory cells in vivo and in vitro. On the other hand, muscle-derived cytokines can signal for inflammatory cell invasion, at least in vitro. The immediate challenge for advancing our current understanding of the relationships between muscle and inflammatory cells during muscle injury and repair is to place what has been learned in vitro into the complex and dynamic in vivo environment.
                Bookmark

                Author and article information

                Journal
                An Bras Dermatol
                Anais brasileiros de dermatologia
                FapUNIFESP (SciELO)
                1806-4841
                0365-0596
                November 10 2016
                : 91
                : 5
                Affiliations
                [1 ] Fundação Oswaldo Cruz (Fiocruz), Salvador, BA, Brazil.
                [2 ] Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil.
                Article
                S0365-05962016000500614
                10.1590/abd1806-4841.20164741
                5087220
                27828635
                269eb5a9-f91b-43cc-8fe4-e552d63e35f7
                History

                Comments

                Comment on this article