92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metformin improves healthspan and lifespan in mice

      Nature Communications
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of microarray data using Z score transformation.

          High-throughput cDNA microarray technology allows for the simultaneous analysis of gene expression levels for thousands of genes and as such, rapid, relatively simple methods are needed to store, analyze, and cross-compare basic microarray data. The application of a classical method of data normalization, Z score transformation, provides a way of standardizing data across a wide range of experiments and allows the comparison of microarray data independent of the original hybridization intensities. Data normalized by Z score transformation can be used directly in the calculation of significant changes in gene expression between different samples and conditions. We used Z scores to compare several different methods for predicting significant changes in gene expression including fold changes, Z ratios, Z and t statistical tests. We conclude that the Z score transformation normalization method accompanied by either Z ratios or Z tests for significance estimates offers a useful method for the basic analysis of microarray data. The results provided by these methods can be as rigorous and are no more arbitrary than other test methods, and, in addition, they have the advantage that they can be easily adapted to standard spreadsheet programs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.

            We report here a new mitochondrial regulation occurring only in intact cells. We have investigated the effects of dimethylbiguanide on isolated rat hepatocytes, permeabilized hepatocytes, and isolated liver mitochondria. Addition of dimethylbiguanide decreased oxygen consumption and mitochondrial membrane potential only in intact cells but not in permeabilized hepatocytes or isolated mitochondria. Permeabilized hepatocytes after dimethylbiguanide exposure and mitochondria isolated from dimethylbiguanide pretreated livers or animals were characterized by a significant inhibition of oxygen consumption with complex I substrates (glutamate and malate) but not with complex II (succinate) or complex IV (N,N,N',N'-tetramethyl-1, 4-phenylenediamine dihydrochloride (TMPD)/ascorbate) substrates. Studies using functionally isolated complex I obtained from mitochondria isolated from dimethylbiguanide-pretreated livers or rats further confirmed that dimethylbiguanide action was located on the respiratory chain complex I. The dimethylbiguanide effect was temperature-dependent, oxygen consumption decreasing by 50, 20, and 0% at 37, 25, and 15 degrees C, respectively. This effect was not affected by insulin-signaling pathway inhibitors, nitric oxide precursor or inhibitors, oxygen radical scavengers, ceramide synthesis inhibitors, or chelation of intra- or extracellular Ca(2+). Because it is established that dimethylbiguanide is not metabolized, these results suggest the existence of a new cell-signaling pathway targeted to the respiratory chain complex I with a persistent effect after cessation of the signaling process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1.

              Metformin is a widely prescribed antidiabetic drug associated with a reduced risk of cancer. Many studies show that metformin inhibits cancer cell viability through the inhibition of mTOR. We recently showed that antiproliferative action of metformin in prostate cancer cell lines is not mediated by AMP-activated protein kinase (AMPK). We identified REDD1 (also known as DDIT4 and RTP801), a negative regulator of mTOR, as a new molecular target of metformin. We show that metformin increases REDD1 expression in a p53-dependent manner. REDD1 invalidation, using siRNA or REDD1(-/-) cells, abrogates metformin inhibition of mTOR. Importantly, inhibition of REDD1 reverses metformin-induced cell-cycle arrest and significantly protects from the deleterious effects of metformin on cell transformation. Finally, we show the contribution of p53 in mediating metformin action in prostate cancer cells. These results highlight the p53/REDD1 axis as a new molecular target in anticancer therapy in response to metformin treatment. ©2011 AACR.
                Bookmark

                Author and article information

                Journal
                10.1038/ncomms3192

                Comments

                Comment on this article