68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SMART: recent updates, new developments and status in 2015

          SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de/) providing simple identification and extensive annotation of protein domains and the exploration of protein domain architectures. In the current version, SMART contains manually curated models for more than 1200 protein domains, with ∼200 new models since our last update article. The underlying protein databases were synchronized with UniProt, Ensembl and STRING, bringing the total number of annotated domains and other protein features above 100 million. SMART's ‘Genomic’ mode, which annotates proteins from completely sequenced genomes was greatly expanded and now includes 2031 species, compared to 1133 in the previous release. SMART analysis results pages have been completely redesigned and include links to several new information sources. A new, vector-based display engine has been developed for protein schematics in SMART, which can also be exported as high-resolution bitmap images for easy inclusion into other documents. Taxonomic tree displays in SMART have been significantly improved, and can be easily navigated using the integrated search engine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilms: the matrix revisited.

            Microbes often construct and live within surface-associated multicellular communities known as biofilms. The precise structure, chemistry and physiology of the biofilm all vary with the nature of its resident microbes and local environment. However, an important commonality among biofilms is that their structural integrity critically depends upon an extracellular matrix produced by their constituent cells. Extracellular matrices might be as diverse as biofilms, and they contribute significantly to the organization of the community. This review discusses recent advances in our understanding of the extracellular matrix and its role in biofilm biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilms in chronic wounds.

              Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. It has been speculated that bacteria colonizing chronic wounds exist as highly persistent biofilm communities. This research examined chronic and acute wounds for biofilms and characterized microorganisms inhabiting these wounds. Chronic wound specimens were obtained from 77 subjects and acute wound specimens were obtained from 16 subjects. Culture data were collected using standard clinical techniques. Light and scanning electron microscopy techniques were used to analyze 50 of the chronic wound specimens and the 16 acute wound specimens. Molecular analyses were performed on the remaining 27 chronic wound specimens using denaturing gradient gel electrophoresis and sequence analysis. Of the 50 chronic wound specimens evaluated by microscopy, 30 were characterized as containing biofilm (60%), whereas only one of the 16 acute wound specimens was characterized as containing biofilm (6%). This was a statistically significant difference (p<0.001). Molecular analyses of chronic wound specimens revealed diverse polymicrobial communities and the presence of bacteria, including strictly anaerobic bacteria, not revealed by culture. Bacterial biofilm prevalence in specimens from chronic wounds relative to acute wounds observed in this study provides evidence that biofilms may be abundant in chronic wounds.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol. Rev.
                FEMS microbiology reviews
                Oxford University Press (OUP)
                1574-6976
                0168-6445
                Sep 2015
                : 39
                : 5
                Affiliations
                [1 ] Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
                [2 ] James Clerk Maxwell Building, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK.
                [3 ] Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK n.r.stanleywall@dundee.ac.uk.
                Article
                fuv015
                10.1093/femsre/fuv015
                4551309
                25907113
                91119a33-54fc-4dd3-aeae-bd05e5ba0b33
                © FEMS 2015.
                History

                Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Vibrio cholerae,amyloid fibres,biofilm matrix assembly,biophysics,hydrophobin

                Comments

                Comment on this article