31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies

      ,
      Microbiology and Molecular Biology Reviews
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.

          Related collections

          Most cited references373

          • Record: found
          • Abstract: found
          • Article: not found

          Quorum sensing: cell-to-cell communication in bacteria.

          Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteomyelitis.

            Bone and joint infections are painful for patients and frustrating for both them and their doctors. The high success rates of antimicrobial therapy in most infectious diseases have not yet been achieved in bone and joint infections owing to the physiological and anatomical characteristics of bone. The key to successful management is early diagnosis, including bone sampling for microbiological and pathological examination to allow targeted and long-lasting antimicrobial therapy. The various types of osteomyelitis require differing medical and surgical therapeutic strategies. These types include, in order of decreasing frequency: osteomyelitis secondary to a contiguous focus of infection (after trauma, surgery, or insertion of a joint prosthesis); that secondary to vascular insufficiency (in diabetic foot infections); or that of haematogenous origin. Chronic osteomyelitis is associated with avascular necrosis of bone and formation of sequestrum (dead bone), and surgical debridement is necessary for cure in addition to antibiotic therapy. By contrast, acute osteomyelitis can respond to antibiotics alone. Generally, a multidisciplinary approach is required for success, involving expertise in orthopaedic surgery, infectious diseases, and plastic surgery, as well as vascular surgery, particularly for complex cases with soft-tissue loss.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA.

              Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Microbiology and Molecular Biology Reviews
                Microbiol Mol Biol Rev
                American Society for Microbiology
                1092-2172
                1098-5557
                August 19 2020
                August 12 2020
                : 84
                : 3
                Article
                10.1128/MMBR.00026-19
                32792334
                504ee104-4c29-4d86-a85b-228900de8858
                © 2020
                History

                Comments

                Comment on this article