31
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Inhibition of hypoxia-inducible factor-1alpha and endothelial progenitor cell differentiation by adenoviral transfer of small interfering RNA in vitro.

      Journal of Vascular Research
      Adenoviridae, genetics, Cell Differentiation, Cell Hypoxia, Down-Regulation, Endothelium, cytology, physiology, Genetic Therapy, methods, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, In Vitro Techniques, Neoplasms, therapy, RNA, Small Interfering, Stem Cells, Transduction, Genetic

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference is applied to study gene function in different organisms and in various cell types. Little is known about the effect of RNA interference on human endothelial progenitor cells (EPCs) in vitro. To address this issue, short hairpin RNA targeting the human hypoxia inducible factor-1alpha (HIF-1alpha) was transferred into human EPCs by an adenoviral vector. HIF-1alpha mRNA and protein expression was dramatically and specifically downregulated after adeno-small interfering RNA (siRNA)-HIF-1alpha infection in cells under hypoxia, a condition in which HIF-1alpha would have been induced. This effect persisted for at least 72 h and was accompanied by suppression of vascular endothelial growth factor (VEGF) mRNA and protein expression. The expression of endothelial cell markers CD31, VEGF receptor 2 (Flk-1) and eNOS as well as NO production were also markedly decreased. Functional studies showed HIF-1alpha knockdown via adenoviral siRNA transfer inhibited EPC colony formation, differentiation, proliferation and migration. These data indicate that specific gene knockdown via adenoviral transfer of siRNA is feasible in EPCs, and the effect is long-lasting. Our findings raise the possibility that such long-term modified human EPCs may be used to treat hypoxic tumor metastases that are known to be resistant to conventional therapeutic regimes.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          HIF-1 as a target for drug development.

          Sensing and responding to fluxes in oxygen tension is perhaps the single most important variable in physiology, and animal tissues have developed a number of essential mechanisms to cope with the stress of low physiological oxygen levels, or hypoxia. Among these coping mechanisms is the response mediated by the hypoxia-inducible transcription factor, or HIF-1. HIF-1 is an essential component in changing the transcriptional repertoire of tissues as oxygen levels drop, and could prove to be a very important target for drug development, as treatments evolve for diseases, such as cancer, heart disease and stroke, in which hypoxia is a central aspect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells.

            Angiogenic tumor vessels are promising targets for the activity and the selective delivery of cancer therapeutics. The bone marrow contributes different cell types to the tumor stroma, including hematopoietic cells and, as recently suggested, vascular endothelial cells (ECs). Thus, transplantation of genetically modified bone marrow progenitors may represent a vehicle for the transport of gene therapy to tumors. We transduced bone marrow progenitors with lentiviral vectors expressing genes from transcription-regulatory elements of Tie2/Tek gene. When tumors were grown in the transplanted mice, the new vector marked a distinct hematopoietic population that 'homed' to the tumor and closely interacted with vascular ECs at the tumor periphery. These Tie2-expressing mononuclear (TEM) cells had a distinguishable phenotype and were present selectively at angiogenic sites. Unexpectedly, we did not find bone marrow-derived ECs in tumor vessels when we transplanted bone marrow progenitors constitutively expressing a marker gene from the Tie2 or ubiquitously active promoters. By delivering a 'suicide' gene, we selectively eliminated the TEM cells and achieved substantial inhibition of angiogenesis and slower tumor growth without systemic toxicity. Thus, TEM cells may account for the proangiogenic activity of bone marrow-derived cells in tumors, may represent a new target for drug development and may provide the means for selective gene delivery and targeted inhibition of tumor angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila.

              Two types of transgene silencing were found for the Alcohol dehydrogenase (Adh) transcription unit. Transcriptional gene silencing (TGS) is Polycomb dependent and occurs when Adh is driven by the white eye color gene promoter. Full-length Adh transgenes are silenced posttranscriptionally at high copy number or by a pulsed increase over a threshold. The posttranscriptional gene silencing (PTGS) exhibits molecular hallmarks typical of RNA interference (RNAi), including the production of 21--25 bp length sense and antisense RNAs homologous to the silenced RNA. Mutations in piwi, which belongs to a gene family with members required for RNAi, block PTGS and one aspect of TGS, indicating a connection between the two types of silencing.
                Bookmark

                Author and article information

                Comments

                Comment on this article