116
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Adapting to climate change to sustain food security : Adapting to climate change to sustain food security

      ,
      Wiley Interdisciplinary Reviews: Climate Change
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Prioritizing climate change adaptation needs for food security in 2030.

          Investments aimed at improving agricultural adaptation to climate change inevitably favor some crops and regions over others. An analysis of climate risks for crops in 12 food-insecure regions was conducted to identify adaptation priorities, based on statistical crop models and climate projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern Africa as two regions that, without sufficient adaptation measures, will likely suffer negative impacts on several crops that are important to large food-insecure human populations. We also find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes of investment institutions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Are there social limits to adaptation to climate change?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations.

              Model projections suggest that although increased temperature and decreased soil moisture will act to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide concentration ([CO2]) will offset these losses. The CO2 fertilization factors used in models to project future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO2] under fully open-air field conditions. In those trials, elevated [CO2] enhanced yield by approximately 50% less than in enclosure studies. This casts serious doubt on projections that rising [CO2] will fully offset losses due to climate change.
                Bookmark

                Author and article information

                Journal
                Wiley Interdisciplinary Reviews: Climate Change
                WIREs Clim Change
                Wiley-Blackwell
                17577780
                July 2010
                July 2010
                : 1
                : 4
                : 525-540
                Article
                10.1002/wcc.56
                9c3e701a-9599-4856-9456-327a09d52912
                © 2010

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article