225
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melatoninergic System in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms

      Oxidative Medicine and Cellular Longevity
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α -synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson’s disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT 1 and MT 2 . Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.

          Related collections

          Most cited references269

          • Record: found
          • Abstract: found
          • Article: not found

          Extrapineal melatonin: sources, regulation, and potential functions.

          Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.

            Four persons developed marked parkinsonism after using an illicit drug intravenously. Analysis of the substance injected by two of these patients revealed primarily 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) with trace amounts of 1-methyl-4-phenyl-4-propionoxy-piperidine (MPPP). On the basis of the striking parkinsonian features observed in our patients, and additional pathological data from one previously reported case, it is proposed that this chemical selectively damages cells in the substantia nigra.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations.

              We studied the subcellular levels of melatonin in cerebral cortex and liver of rats under several conditions. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondrion vary over a 24-hr cycle, although these variations do not exhibit circadian rhythms. The cell membrane has the highest concentration of melatonin followed by mitochondria, nucleus, and cytosol. Pinealectomy significantly increased the content of melatonin in all subcellular compartments, whereas luzindole treatment had little effect on melatonin levels. Administration of 10 mg/kg bw melatonin to sham-pinealectomized, pinealectomized, or continuous light-exposed rats increased the content of melatonin in all subcellular compartments. Melatonin in doses ranging from 40 to 200 mg/kg bw increased in a dose-dependent manner the accumulation of melatonin on cell membrane and cytosol, although the accumulations were 10 times greater in the former than in the latter. Melatonin levels in the nucleus and mitochondria reached saturation with a dose of 40 mg/kg bw; higher doses of injected melatonin did not further cause additional accumulation of melatonin in these organelles. The results suggest some control of extrapineal accumulation or extrapineal production of melatonin and support the existence of regulatory mechanisms in cellular organelles, which prevent the intracellular equilibration of the indolamine. Seemingly, different concentrations of melatonin can be maintained in different subcellular compartments. The data also seem to support a requirement of high doses of melatonin to obtain therapeutic effects. Together, these results add information that assists in explaining the physiology and pharmacology of melatonin. © 2011 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Journal
                10.1155/2016/3472032
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article