5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Germ Granules Govern Small RNA Inheritance

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary In C. elegans nematodes, components of liquid-like germ granules were shown to be required for transgenerational small RNA inheritance. Surprisingly, we show here that mutants with defective germ granules can nevertheless inherit potent small RNA-based silencing responses, but some of the mutants lose this ability after many generations of homozygosity. Animals mutated in pptr-1, which is required for stabilization of P granules in the early embryo, display extraordinarily strong heritable RNAi responses, lasting for tens of generations. Intriguingly, the RNAi capacity of descendants derived from mutants defective in the core germ granule proteins MEG-3 and MEG-4 is determined by the genotype of the ancestors and changes transgenerationally. Further, whether the meg-3/4 mutant alleles were present in the paternal or maternal lineages leads to different transgenerational consequences. Small RNA inheritance, rather than maternal contribution of the germ granules themselves, mediates the transgenerational defects in RNAi of meg-3/4 mutants and their progeny. Accordingly, germ granule defects lead to heritable genome-wide mis-expression of endogenous small RNAs. Upon disruption of germ granules, hrde-1 mutants can inherit RNAi, although HRDE-1 was previously thought to be absolutely required for RNAi inheritance. We propose that germ granules sort and shape the RNA pool, and that small RNA inheritance maintains this activity for multiple generations.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          RNA-mediated epigenetic regulation of gene expression.

          Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ShortStack: comprehensive annotation and quantification of small RNA genes.

            Small RNA sequencing allows genome-wide discovery, categorization, and quantification of genes producing regulatory small RNAs. Many tools have been described for annotation and quantification of microRNA loci (MIRNAs) from small RNA-seq data. However, in many organisms and tissue types, MIRNA genes comprise only a small fraction of all small RNA-producing genes. ShortStack is a stand-alone application that analyzes reference-aligned small RNA-seq data and performs comprehensive de novo annotation and quantification of the inferred small RNA genes. ShortStack's output reports multiple parameters of direct relevance to small RNA gene annotation, including RNA size distributions, repetitiveness, strandedness, hairpin-association, MIRNA annotation, and phasing. In this study, ShortStack is demonstrated to perform accurate annotations and useful descriptions of diverse small RNA genes from four plants (Arabidopsis, tomato, rice, and maize) and three animals (Drosophila, mice, and humans). ShortStack efficiently processes very large small RNA-seq data sets using modest computational resources, and its performance compares favorably to previously described tools. Annotation of MIRNA loci by ShortStack is highly specific in both plants and animals. ShortStack is freely available under a GNU General Public License.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A nuclear Argonaute promotes multi-generational epigenetic inheritance and germline immortality

              Epigenetic information is frequently erased near the start of each new generation (1). In some cases, however, epigenetic information can be transmitted from parent to progeny (epigenetic inheritance) (2). A particularly striking example of epigenetic inheritance is dsRNA-mediated gene silencing (RNAi) in C. elegans, which can be inherited for more than five generations (3–8). To understand this process we conducted a genetic screen for animals defective for transmitting RNAi silencing signals to future generations. This screen identified the gene heritable RNAi defective (hrde)-1. hrde-1 encodes an Argonaute (Ago) that associates with small interfering (si)RNAs in germ cells of the progeny of animals exposed to dsRNA. In nuclei of these germ cells, HRDE-1 engages the Nrde nuclear RNAi pathway to direct H3K9me3 at RNAi targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed siRNAs, which direct nuclear gene silencing in germ cells. In hrde-1 or nuclear RNAi deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Ago HRDE-1 directs gene-silencing events in germ cell nuclei, which drive multi-generational RNAi inheritance and promote immortality of the germ cell lineage. We propose that C. elegans uses the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.
                Bookmark

                Author and article information

                Journal
                Current Biology
                Current Biology
                Elsevier BV
                09609822
                August 2019
                August 2019
                Article
                10.1016/j.cub.2019.07.054
                985f243b-25d1-428f-a15a-3249b9ca695d
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article