46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment

      Journal of Cellular and Molecular Medicine
      Blackwell Publishing Ltd
      endothelial cell (ec), endothelial progenitor cells (epcs), macrophage migration inhibitory factor (mif), stromal cell-derived factor-1α (sdf-1α/cxcl12)

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that was recently identified as a non-cognate ligand of the CXC-family chemokine receptors 2 and 4 (CXCR2 and CXCR4). MIF is expressed and secreted from endothelial cells (ECs) following atherogenic stimulation, exhibits chemokine-like properties and promotes the recruitment of leucocytes to atherogenic endothelium. CXCR4 expressed on endothelial progenitor cells (EPCs) and EC-derived CXCL12, the cognate ligand of CXCR4, have been demonstrated to be critical when EPCs are recruited to ischemic tissues. Here we studied whether hypoxic stimulation triggers MIF secretion from ECs and whether the MIF/CXCR4 axis contributes to EPC recruitment. Exposure of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAoECs) to 1% hypoxia led to the specific release of substantial amounts of MIF. Hypoxia-induced MIF release followed a biphasic behaviour. MIF secretion in the first phase peaked at 60 min. and was inhibited by glyburide, indicating that this MIF pool was secreted by a non-classical mechanism and originated from pre-formed MIF stores. Early hypoxia-triggered MIF secretion was not inhibited by cycloheximide and echinomycin, inhibitors of general and hypoxia-inducible factor (HIF)-1α-induced protein synthesis, respectively. A second phase of MIF secretion peaked around 8 hrs and was likely due to HIF-1α-induced de novo synthesis of MIF. To functionally investigate the role of hypoxia-inducible secreted MIF on the recruitment of EPCs, we subjected human AcLDL+ KDR+ CD31+ EPCs to a chemotactic MIF gradient. MIF potently promoted EPC chemotaxis in a dose-dependent bell-shaped manner (peak: 10 ng/ml MIF). Importantly, EPC migration was induced by supernatants of hypoxia-conditioned HUVECs, an effect that was completely abrogated by anti-MIF- or anti-CXCR4-antibodies. Thus, hypoxia-induced MIF secretion from ECs might play an important role in the recruitment and migration of EPCs to hypoxic tissues such as after ischemia-induced myocardial damage.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage migration inhibitory factor: a regulator of innate immunity

          Key Points Cytokines are essential effector molecules of innate immunity that initiate and coordinate the cellular and humoral responses aimed, for example, at the eradication of microbial pathogens. Discovered in the late 1960s as a product of activated T cells, the cytokine macrophage migration inhibitory factor (MIF) has been discovered recently to carry out important functions as a mediator of the innate immune system. Constitutively expressed by a broad spectrum of cells and tissues, including monocytes and macrophages, MIF is rapidly released after exposure to microbial products and pro-inflammatory mediators, and in response to stress. After it is released, MIF induces pro-inflammatory biological responses that act as a regulator of immune responses. MIF activates the extracellular signal-regulated kinase 1 (ERK1)/ERK2–mitogen-activated protein kinase pathway, inhibits the activity of JUN activation domain-binding protein 1 (JAB1) — a co-activator of the activator protein 1 (AP1) — upregulates the expression of Toll-like receptor 4 to promote the recognition of endotoxin-expressing bacterial pathogens, sustains pro-inflammatory function by inhibiting p53-dependent apoptosis of macrophages and counter-regulates the immunosuppressive effects of glucocorticoids on immune cells. As a pro-inflammatory mediator, MIF has been shown to be implicated in the pathogenesis of severe sepsis and septic shock, acute respiratory distress syndrome, and several other inflammatory and autoimmune diseases, including rheumatoid arthritis, glomerulonephritis and inflammatory bowel diseases. Given its crucial role as a regulator of innate and acquired immunity, pharmacological or immunological modulation of MIF activity might offer new treatment opportunities for the management of acute and chronic inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.

            The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart.

              Understanding cellular response to environmental stress has broad implications for human disease. AMP-activated protein kinase (AMPK) orchestrates the regulation of energy-generating and -consuming pathways, and protects the heart against ischaemic injury and apoptosis. A role for circulating hormones such as adiponectin and leptin in the activation of AMPK has received recent attention. Whether local autocrine and paracrine factors within target organs such as the heart modulate AMPK is unknown. Here we show that macrophage migration inhibitory factor (MIF), an upstream regulator of inflammation, is released in the ischaemic heart, where it stimulates AMPK activation through CD74, promotes glucose uptake and protects the heart during ischaemia-reperfusion injury. Germline deletion of the Mif gene impairs ischaemic AMPK signalling in the mouse heart. Human fibroblasts with a low-activity MIF promoter polymorphism have diminished MIF release and AMPK activation during hypoxia. Thus, MIF modulates the activation of the cardioprotective AMPK pathway during ischaemia, functionally linking inflammation and metabolism in the heart. We anticipate that genetic variation in MIF expression may impact on the response of the human heart to ischaemia by the AMPK pathway, and that diagnostic MIF genotyping might predict risk in patients with coronary artery disease.
                Bookmark

                Author and article information

                Journal
                20178462
                3922388
                10.1111/j.1582-4934.2010.01041.x
                Unknown

                Molecular medicine
                endothelial cell (ec),endothelial progenitor cells (epcs),macrophage migration inhibitory factor (mif),stromal cell-derived factor-1α (sdf-1α/cxcl12)

                Comments

                Comment on this article