41
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental changes, microbiota, and allergic diseases.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the last few decades, the prevalence of allergic disease has increased dramatically. The development of allergic diseases has been attributed to complex interactions between environmental factors and genetic factors. Of the many possible environmental factors, most research has focused on the most commonly encountered environmental factors, such as air pollution and environmental microbiota in combination with climate change. There is increasing evidence that such environmental factors play a critical role in the regulation of the immune response that is associated with allergic diseases, especially in genetically susceptible individuals. This review deals with not only these environmental factors and genetic factors but also their interactions in the development of allergic diseases. It will also emphasize the need for early interventions that can prevent the development of allergic diseases in susceptible populations and how these interventions can be identified.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          What are the consequences of the disappearing human microbiota?

          Humans and our ancestors have evolved since the most ancient times with a commensal microbiota. The conservation of indicator species in a niche-specific manner across all of the studied human population groups suggests that the microbiota confer conserved benefits on humans. Nevertheless, certain of these organisms have pathogenic properties and, through medical practices and lifestyle changes, their prevalence in human populations is changing, often to an extreme degree. In this Essay, we propose that the disappearance of these ancestral indigenous organisms, which are intimately involved in human physiology, is not entirely beneficial and has consequences that might include post-modern conditions such as obesity and asthma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low diversity of the gut microbiota in infants with atopic eczema.

            It is debated whether a low total diversity of the gut microbiota in early childhood is more important than an altered prevalence of particular bacterial species for the increasing incidence of allergic disease. The advent of powerful, cultivation-free molecular methods makes it possible to characterize the total microbiome down to the genus level in large cohorts. We sought to assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to atopic eczema development. Microbial diversity and composition were analyzed with barcoded 16S rDNA 454-pyrosequencing in stool samples at 1 week, 1 month, and 12 months of age in 20 infants with IgE-associated eczema and 20 infants without any allergic manifestation until 2 years of age (ClinicalTrials.gov ID NCT01285830). Infants with IgE-associated eczema had a lower diversity of the total microbiota at 1 month (P = .004) and a lower diversity of the bacterial phylum Bacteroidetes and the genus Bacteroides at 1 month (P = .02 and P = .01) and the phylum Proteobacteria at 12 months of age (P = .02). The microbiota was less uniform at 1 month than at 12 months of age, with a high interindividual variability. At 12 months, when the microbiota had stabilized, Proteobacteria, comprising gram-negative organisms, were more abundant in infants without allergic manifestation (Empirical Analysis of Digital Gene Expression in R [edgeR] test: P = .008, q = 0.02). Low intestinal microbial diversity during the first month of life was associated with subsequent atopic eczema. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age.

              Changes in the human microbiome have been suggested as a risk factor for a number of lifestyle-related disorders, such as atopic diseases, possibly through a modifying influence on immune maturation in infancy. We aimed to explore the association between neonatal fecal flora and the development of atopic disorders until age 6 years, hypothesizing that the diversity of the intestinal microbiota influences disease development. We studied the intestinal microbiota in infants in the Copenhagen Prospective Study on Asthma in Childhood, a clinical study of a birth cohort of 411 high-risk children followed for 6 years by clinical assessments at 6-month intervals, as well as at acute symptom exacerbations. Bacterial flora was analyzed at 1 and 12 months of age by using molecular techniques based on 16S rRNA PCR combined with denaturing gradient gel electrophoresis, as well as conventional culturing. The main outcome measures were the development of allergic sensitization (skin test and specific serum IgE), allergic rhinitis, peripheral blood eosinophil counts, asthma, and atopic dermatitis during the first 6 years of life. We found that bacterial diversity in the early intestinal flora 1 and 12 months after birth was inversely associated with the risk of allergic sensitization (serum specific IgE P = .003; skin prick test P = .017), peripheral blood eosinophils (P = .034), and allergic rhinitis (P = .007). There was no association with the development of asthma or atopic dermatitis. Reduced bacterial diversity of the infant's intestinal flora was associated with increased risk of allergic sensitization, allergic rhinitis, and peripheral blood eosinophilia, but not asthma or atopic dermatitis, in the first 6 years of life. These results support the general hypothesis that an imbalance in the intestinal microbiome is influencing the development of lifestyle-related disorders, such as allergic disease. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Allergy Asthma Immunol Res
                Allergy, asthma & immunology research
                The Korean Academy of Asthma, Allergy and Clinical Immunology and The Korean Academy of Pediatric Al
                2092-7355
                2092-7355
                Sep 2014
                : 6
                : 5
                Affiliations
                [1 ] Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea.
                [2 ] Department of Pediatrics, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Korea.
                [3 ] Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea.
                [4 ] Department of Pediatrics, Childhood Asthma Atopy Center, University of Ulsan College of Medicine, Seoul, Korea. ; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
                Article
                10.4168/aair.2014.6.5.389
                4161679
                25228995
                0b0b43f5-3291-4a2f-b6d4-055fe0ac00ab
                History

                climate change,microbiota,pollution,gene-environmental interaction,Allergic disease,epigenetics

                Comments

                Comment on this article