7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new paradigm for reproducing and analyzing N-body simulations of planetary systems

      Preprint
      ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reproducibility of experiments is one of the main principles of the scientific method. However, numerical N-body experiments, especially those of planetary systems, are currently not reproducible. In the most optimistic scenario, they can only be replicated in an approximate or statistical sense. Even if authors share their full source code and initial conditions, differences in compilers, libraries, operating systems or hardware often lead to qualitatively different results. We provide a new set of easy-to-use, open-source tools that address the above issues, allowing for exact (bit-by-bit) reproducibility of N-body experiments. In addition to generating completely reproducible integrations, we show that our framework also offers novel and innovative ways to analyze these simulations. As an example, we present a high-accuracy integration of the Solar System spanning 10Gyrs, requiring several weeks to run on a modern CPU. In our framework we can not only easily access simulation data at predefined intervals for which we save snapshots, but at any time during the integration. We achieve this by integrating an on-demand reconstructed simulation forward in time from the nearest snapshot. This allows us to extract arbitrary quantities at any point in the saved simulation exactly (bit-by-bit), and within seconds rather than weeks. We believe that the tools we present in this paper offer a new paradigm for how N-body simulations are run, analyzed, and shared across the community.

          Related collections

          Author and article information

          Journal
          2017-01-25
          Article
          10.1093/mnras/stx232
          1701.07423
          521a4ac4-5c03-4ef3-842c-01f6d9ba5cf5

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          7 pages, 4 figures, accepted for publication in MNRAS, REBOUND code available at https://github.com/hannorein/rebound , script and data files to reproduce plots in the paper available at https://github.com/hannorein/reproducibility-paper
          astro-ph.EP astro-ph.IM

          Planetary astrophysics,Instrumentation & Methods for astrophysics
          Planetary astrophysics, Instrumentation & Methods for astrophysics

          Comments

          Comment on this article