128
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging

      research-article
      * ,
      Neuroimage
      Academic Press
      Diffusion, Eddy current, Movement, Susceptibility, Registration

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper we describe a method for retrospective estimation and correction of eddy current (EC)-induced distortions and subject movement in diffusion imaging. In addition a susceptibility-induced field can be supplied and will be incorporated into the calculations in a way that accurately reflects that the two fields (susceptibility- and EC-induced) behave differently in the presence of subject movement. The method is based on registering the individual volumes to a model free prediction of what each volume should look like, thereby enabling its use on high b-value data where the contrast is vastly different in different volumes. In addition we show that the linear EC-model commonly used is insufficient for the data used in the present paper (high spatial and angular resolution data acquired with Stejskal–Tanner gradients on a 3 T Siemens Verio, a 3 T Siemens Connectome Skyra or a 7 T Siemens Magnetome scanner) and that a higher order model performs significantly better.

          The method is already in extensive practical use and is used by four major projects (the WU-UMinn HCP, the MGH HCP, the UK Biobank and the Whitehall studies) to correct for distortions and subject movement.

          Highlights

          • We present a new method for correction of eddy current-induced distortions and subject movement in diffusion data.

          • It is based on alignment to predictions based on a Gaussian process

          • The results indicate that one can achieve reliable corrections even for high b-value data ( b = 7000).

          • A comparison to correlation ratio based registration (eddy_correct) indicates that the new method is vastly superior.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI.

          Parallel imaging in the form of multiband radiofrequency excitation, together with reduced k-space coverage in the phase-encode direction, was applied to human gradient echo functional MRI at 7 T for increased volumetric coverage and concurrent high spatial and temporal resolution. Echo planar imaging with simultaneous acquisition of four coronal slices separated by 44mm and simultaneous 4-fold phase-encoding undersampling, resulting in 16-fold acceleration and up to 16-fold maximal aliasing, was investigated. Task/stimulus-induced signal changes and temporal signal behavior under basal conditions were comparable for multiband and standard single-band excitation and longer pulse repetition times. Robust, whole-brain functional mapping at 7 T, with 2 x 2 x 2mm(3) (pulse repetition time 1.25 sec) and 1 x 1 x 2mm(3) (pulse repetition time 1.5 sec) resolutions, covering fields of view of 256 x 256 x 176 mm(3) and 192 x 172 x 176 mm(3), respectively, was demonstrated with current gradient performance. (c) 2010 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.

            Perhaps more than any other "-omics" endeavor, the accuracy and level of detail obtained from mapping the major connection pathways in the living human brain with diffusion MRI depend on the capabilities of the imaging technology used. The current tools are remarkable; allowing the formation of an "image" of the water diffusion probability distribution in regions of complex crossing fibers at each of half a million voxels in the brain. Nonetheless our ability to map the connection pathways is limited by the image sensitivity and resolution, and also the contrast and resolution in encoding of the diffusion probability distribution. The goal of our Human Connectome Project (HCP) is to address these limiting factors by re-engineering the scanner from the ground up to optimize the high b-value, high angular resolution diffusion imaging needed for sensitive and accurate mapping of the brain's structural connections. Our efforts were directed based on the relative contributions of each scanner component. The gradient subsection was a major focus since gradient amplitude is central to determining the diffusion contrast, the amount of T2 signal loss, and the blurring of the water PDF over the course of the diffusion time. By implementing a novel 4-port drive geometry and optimizing size and linearity for the brain, we demonstrate a whole-body sized scanner with G(max) = 300 mT/m on each axis capable of the sustained duty cycle needed for diffusion imaging. The system is capable of slewing the gradient at a rate of 200 T/m/s as needed for the EPI image encoding. In order to enhance the efficiency of the diffusion sequence we implemented a FOV shifting approach to Simultaneous MultiSlice (SMS) EPI capable of unaliasing 3 slices excited simultaneously with a modest g-factor penalty allowing us to diffusion encode whole brain volumes with low TR and TE. Finally we combine the multi-slice approach with a compressive sampling reconstruction to sufficiently undersample q-space to achieve a DSI scan in less than 5 min. To augment this accelerated imaging approach we developed a 64-channel, tight-fitting brain array coil and show its performance benefit compared to a commercial 32-channel coil at all locations in the brain for these accelerated acquisitions. The technical challenges of developing the over-all system are discussed as well as results from SNR comparisons, ODF metrics and fiber tracking comparisons. The ultra-high gradients yielded substantial and immediate gains in the sensitivity through reduction of TE and improved signal detection and increased efficiency of the DSI or HARDI acquisition, accuracy and resolution of diffusion tractography, as defined by identification of known structure and fiber crossing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prospective motion correction in brain imaging: a review.

              Motion correction in magnetic resonance imaging by real-time adjustment of the imaging pulse sequence was first proposed more than 20 years ago. Recent advances have resulted from combining real-time correction with new navigator and external tracking mechanisms capable of quantifying rigid-body motion in all 6 degrees of freedom. The technique is now often referred to as "prospective motion correction." This article describes the fundamentals of prospective motion correction and reviews the latest developments in its application to brain imaging and spectroscopy. Although emphasis is placed on the brain as the organ of interest, the same principles apply whenever the imaged object can be approximated as a rigid body. Prospective motion correction can be used with most MR sequences, so it has potential to make a large impact in clinical routine. To maximize the benefits obtained from the technique, there are, however, several challenges still to be met. These include practical implementation issues, such as obtaining tracking data with minimal delay, and more fundamental problems, such as the magnetic field distortions caused by a moving object. This review discusses these challenges and summarizes the state of the art. We hope that this work will motivate further developments in prospective motion correction and help the technique to reach its full potential. Copyright © 2012 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage
                Neuroimage
                Neuroimage
                Academic Press
                1053-8119
                1095-9572
                15 January 2016
                15 January 2016
                : 125
                : 1063-1078
                Affiliations
                FMRIB Centre, Oxford, United Kingdom
                Author notes
                [* ]Corresponding author at: FMRIB Centre, JR Hospital, Headington, Oxford OX3 9DU, United Kingdom. Fax: + 44 1865 222 717.FMRIB CentreJR HospitalOxfordHeadingtonOX3 9DUUnited Kingdom jesper@ 123456fmrib.ox.ac.uk
                Article
                S1053-8119(15)00920-9
                10.1016/j.neuroimage.2015.10.019
                4692656
                26481672
                d3b35600-446a-4ca1-b507-9c69e2a981b1
                © 2015 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 March 2015
                : 9 October 2015
                Categories
                Article

                Neurosciences
                diffusion,eddy current,movement,susceptibility,registration
                Neurosciences
                diffusion, eddy current, movement, susceptibility, registration

                Comments

                Comment on this article