148
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Viruses in the faecal microbiota of monozygotic twins and their mothers

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viral diversity and lifecycles are poorly understood in the human gut and other body habitats. Therefore, we sequenced the viromes (metagenomes) of virus-like particles isolated from fecal samples collected from adult female monozygotic twins and their mothers at three time points over a one-year period. These datasets were compared to datasets of sequenced bacterial 16S rRNA genes and total fecal community DNA. Co-twins and their mothers share a significantly greater degree of similarity in their fecal bacterial communities than do unrelated individuals. In contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. Despite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal diversity is very low, with >95% of virotypes retained over the period surveyed, and with viromes dominated by a few temperate phage that exhibit remarkable genetic stability. These results indicate that a predatory viral-microbial dynamic, manifest in a number of other characterized environmental ecosystems, is notably absent in the very distal intestine.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".

          The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.

            We constructed error-correcting DNA barcodes that allow one run of a massively parallel pyrosequencer to process up to 1,544 samples simultaneously. Using these barcodes we processed bacterial 16S rRNA gene sequences representing microbial communities in 286 environmental samples, corrected 92% of sample assignment errors, and thus characterized nearly as many 16S rRNA genes as have been sequenced to date by Sanger sequencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The TIGRFAMs database of protein families.

              TIGRFAMs is a collection of manually curated protein families consisting of hidden Markov models (HMMs), multiple sequence alignments, commentary, Gene Ontology (GO) assignments, literature references and pointers to related TIGRFAMs, Pfam and InterPro models. These models are designed to support both automated and manually curated annotation of genomes. TIGRFAMs contains models of full-length proteins and shorter regions at the levels of superfamilies, subfamilies and equivalogs, where equivalogs are sets of homologous proteins conserved with respect to function since their last common ancestor. The scope of each model is set by raising or lowering cutoff scores and choosing members of the seed alignment to group proteins sharing specific function (equivalog) or more general properties. The overall goal is to provide information with maximum utility for the annotation process. TIGRFAMs is thus complementary to Pfam, whose models typically achieve broad coverage across distant homologs but end at the boundaries of conserved structural domains. The database currently contains over 1600 protein families. TIGRFAMs is available for searching or downloading at www.tigr.org/TIGRFAMs.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                July 2010
                July 2010
                : 466
                : 7304
                : 334-338
                Article
                10.1038/nature09199
                85779fec-f0e9-478b-a51c-856ae09e75e4
                © 2010

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article