Blog
About

140
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designing Attractive Models via Automated Identification of Chaotic and Oscillatory Dynamical Regimes

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chaos and oscillations continue to capture the interest of both the scientific and public domains. Yet despite the importance of these qualitative features, most attempts at constructing mathematical models of such phenomena have taken an indirect, quantitative approach, e.g. by fitting models to a finite number of data-points. Here we develop a qualitative inference framework that allows us to both reverse engineer and design systems exhibiting these and other dynamical behaviours by directly specifying the desired characteristics of the underlying dynamical attractor. This change in perspective from quantitative to qualitative dynamics, provides fundamental and new insights into the properties of dynamical systems.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems

          Approximate Bayesian computation methods can be used to evaluate posterior distributions without having to calculate likelihoods. In this paper we discuss and apply an approximate Bayesian computation (ABC) method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC SMC gives information about the inferability of parameters and model sensitivity to changes in parameters, and tends to perform better than other ABC approaches. The algorithm is applied to several well known biological systems, for which parameters and their credible intervals are inferred. Moreover, we develop ABC SMC as a tool for model selection; given a range of different mathematical descriptions, ABC SMC is able to choose the best model using the standard Bayesian model selection apparatus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parameter estimation in biochemical pathways: a comparison of global optimization methods.

            Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Simulation-based model selection for dynamical systems in systems and population biology

              Motivation: Computer simulations have become an important tool across the biomedical sciences and beyond. For many important problems several different models or hypotheses exist and choosing which one best describes reality or observed data is not straightforward. We therefore require suitable statistical tools that allow us to choose rationally between different mechanistic models of, e.g. signal transduction or gene regulation networks. This is particularly challenging in systems biology where only a small number of molecular species can be assayed at any given time and all measurements are subject to measurement uncertainty. Results: Here, we develop such a model selection framework based on approximate Bayesian computation and employing sequential Monte Carlo sampling. We show that our approach can be applied across a wide range of biological scenarios, and we illustrate its use on real data describing influenza dynamics and the JAK-STAT signalling pathway. Bayesian model selection strikes a balance between the complexity of the simulation models and their ability to describe observed data. The present approach enables us to employ the whole formal apparatus to any system that can be (efficiently) simulated, even when exact likelihoods are computationally intractable. Contact: ttoni@imperial.ac.uk; m.stumpf@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                10.1038/ncomms1496
                1108.4746

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Comments

                Comment on this article