Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (hymenoptera: vespidae, polistinae).

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Energy as a constraint on the coding and processing of sensory information.

          Neurons use significant amounts of energy to generate signals. Recent studies of retina and brain connect this energy usage to the ability to transmit information. The identification of energy-efficient neural circuits and codes suggests new ways of understanding the function, design and evolution of nervous systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regressive evolution in Astyanax cavefish.

            A diverse group of animals, including members of most major phyla, have adapted to life in the perpetual darkness of caves. These animals are united by the convergence of two regressive phenotypes, loss of eyes and pigmentation. The mechanisms of regressive evolution are poorly understood. The teleost Astyanax mexicanus is of special significance in studies of regressive evolution in cave animals. This species includes an ancestral surface dwelling form and many con-specific cave-dwelling forms, some of which have evolved their recessive phenotypes independently. Recent advances in Astyanax development and genetics have provided new information about how eyes and pigment are lost during cavefish evolution; namely, they have revealed some of the molecular and cellular mechanisms involved in trait modification, the number and identity of the underlying genes and mutations, the molecular basis of parallel evolution, and the evolutionary forces driving adaptation to the cave environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of color vision in nocturnal mammals.

              Nonfunctional visual genes are usually associated with species that inhabit poor light environments (aquatic/subterranean/nocturnal), and these genes are believed to have lost function through relaxed selection acting on the visual system. Indeed, the visual system is so adaptive that the reconstruction of intact ancestral opsin genes has been used to reject nocturnality in ancestral primates. To test these assertions, we examined the functionality of the short and medium- to long-wavelength opsin genes in a group of mammals that are supremely adapted to a nocturnal niche: the bats. We sequenced the visual cone opsin genes in 33 species of bat with diverse sensory ecologies and reconstructed their evolutionary history spanning 65 million years. We found that, whereas the long-wave opsin gene was conserved in all species, the short-wave opsin gene has undergone dramatic divergence among lineages. The occurrence of gene defects in the short-wave opsin gene leading to loss of function was found to directly coincide with the origin of high-duty-cycle echolocation and changes in roosting ecology in some lineages. Our findings indicate that both opsin genes have been under purifying selection in the majority bats despite a long history of nocturnality. However, when spectacular losses do occur, these result from an evolutionary sensory modality tradeoff, most likely driven by subtle shifts in ecological specialization rather than a nocturnal lifestyle. Our results suggest that UV color vision plays a considerably more important role in nocturnal mammalian sensory ecology than previously appreciated and highlight the caveat of inferring light environments from visual opsins and vice versa.
                Bookmark

                Author and article information

                Journal
                Brain Behav. Evol.
                Brain, behavior and evolution
                1421-9743
                0006-8977
                2013
                : 82
                : 3
                Affiliations
                [1 ] Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pa., USA.
                Article
                000354968
                10.1159/000354968
                24192228
                86084aaa-33b3-42aa-9f40-0301a5f0f479
                © 2013 S. Karger AG, Basel.
                History

                Comments

                Comment on this article