7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase

      Acta Pharmaceutica Sinica. B
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia

          Targeting of cancer stem cells is believed to be essential for curative therapy of cancers, but supporting evidence is limited. Few selective target genes in cancer stem cells have been identified. Here we identify the arachidonate 5-lipoxygenase (5-LO) gene (Alox5) as a critical regulator for leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia (CML). In the absence of Alox5, BCR-ABL failed to induce CML in mice. This Alox5 deficiency caused impairment of the function of LSCs but not normal hematopoietic stem cells (HSCs) through affecting differentiation, cell division, and survival of long-term LSCs (LT-LSCs), consequently causing a depletion of LSCs and a failure of CML development. Treatment of CML mice with a 5-LO inhibitor also impaired the function of LSCs similarly by affecting LT-LSCs, and prolonged survival. These results demonstrate that a specific target gene can be found in cancer stem cells and its inhibition can completely inhibit the function of these stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells.

            Glutamate is an endogenous excitatory neurotransmitter. At high concentrations, it is neurotoxic and contributes to the development of certain neurodegenerative diseases. There is considerable controversy in the literature with regard to whether glutamate-induced cell death in cultured HT22 cells (an immortalized mouse hippocampal cell line) is apoptosis, necrosis, or a new form of cell death. The present study focused on investigating the mechanism of glutamate-induced cell death. We found that glutamate induced, in a time-dependent manner, both necrosis and apoptosis in HT22 cells. At relatively early time points (8-12 h), glutamate induced mostly necrosis, whereas at late time points (16-24 h), it induced mainly apoptosis. Glutamate-induced mitochondrial oxidative stress and dysfunction were crucial early events required for the induction of apoptosis through the release of the mitochondrial apoptosis-inducing factor (AIF), which catalyzed DNA fragmentation (an ATP-independent process). Glutamate-induced cell death proceeded independently of the Bcl-2 family proteins and caspase activation. The lack of caspase activation likely resulted from the lack of intracellular ATP when the mitochondrial functions were rapidly disrupted by the mitochondrial oxidative stress. In addition, it was observed that activation of JNK, p38, and ERK signaling molecules was also involved in the induction of apoptosis by glutamate. In conclusion, glutamate-induced apoptosis is AIF-dependent but caspase-independent, and is accompanied by DNA ladder formation but not chromatin condensation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Therapeutic options for 5-lipoxygenase inhibitors.

              5-Lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) into leukotriene (LT) A(4) and 5-hydroperoxyeicosatetraenoic acid. LTA(4) can then be converted into LTB(4) by LTA(4) hydrolase or into LTC(4) by LTC(4) synthase and the LTC(4) synthase isoenzymes MGST2 and MGST3. LTB(4) is a potent chemoattractant for neutrophils, eosinophils and monocytes leading to adherence of phagocytes to vessel walls, neutrophil degranulation and release of superoxide anions. LTC(4) and its metabolite, LTD(4), are potent bronchoconstrictors that increase vascular permeability and stimulate mucus secretion from airways. Recent data also suggest that LT have an immunomodulatory role. Due to these properties, the increased biosynthesis of LT in asthma, and based upon clinical data obtained with CysLT(1) receptor antagonists in asthma patients, there is a consensus that CysLT play a prominent role in asthma. In this review, we summarize the knowledge on possible functions of the 5-LO pathway in various diseases like asthma, cancer and cardiovascular events and review the corresponding potential therapeutic roles of 5-LO inhibitors.
                Bookmark

                Author and article information

                Journal
                10.1016/j.apsb.2015.11.004
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article