6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Protective Effects of PSM-04 Against Beta Amyloid-Induced Neurotoxicity in Primary Cortical Neurons and an Animal Model of Alzheimer’s Disease

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polygala tenuifolia Willdenow is a herb known for its therapeutic effects in insomnia, depression, disorientation, and memory impairment. In Alzheimer’s disease (AD) animal model, there has been no report on the effects of memory and cognitive impairment. PSM-04, an extract from the root of P. tenuifolia Willdenow, was developed with improved bioabsorption. The present study aimed to investigate the neuroprotective effects of PSM-04 on AD and reveal the possible molecular mechanism. The neuroprotective effect of PSM-04 in primary cortical neurons treated with L-glutamate, oligomeric Aβ, or H 2O 2. PSM-04 exhibited significant neuroprotective effects against neurotoxicity induced by L-glutamate or oligomeric Aβ was studied. PSM-04 exhibited significant neuroprotective effects against neurotoxicity induced by L-glutamate or oligomeric Aβ. Oxidative stress induced by ROS was monitored using the DCF-DA assay, and apoptosis was assessed using the TUNEL assay in primary cortical neurons treated with H 2O 2 or oligomeric Aβ. PSM-04 also decreased oxidative stress induced by H 2O 2 and apoptotic cell death induced by oligomeric Aβ. We evaluated the therapeutic effect of PSM-04 in 5xFAD (Tg) mice, an animal model for AD. PSM-04 was orally administered to 4-month-old 5xFAD mice for 2 months. To confirm the degree of cognitive impairment, a novel object recognition task was performed. The treatment with PSM-04 significantly alleviated cognitive impairments in Tg mice. In addition, amyloid plaques and gliosis decreased significantly in the brains of PSM-04-administered Tg mice compared with Tg-vehicle mice. Furthermore, the administration of PSM-04 increased the superoxide dismutase-2 (SOD-2) protein level in hippocampal brain tissues. Our results indicated that PSM-04 showed therapeutic effects by alleviating cognitive impairment and decreasing amyloid plaque deposition in Tg mice. Therefore, PSM-04 was considered as a potential pharmacological agent for neuroprotective effects in neurodegenerative diseases, including AD.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Object recognition test in mice.

          The object recognition test is now among the most commonly used behavioral tests for mice. A mouse is presented with two similar objects during the first session, and then one of the two objects is replaced by a new object during a second session. The amount of time taken to explore the new object provides an index of recognition memory. As more groups have used the protocol, the variability of the procedures used in the object recognition test has increased steadily. This protocol provides a necessary standardization of the procedure. This protocol reduces inter-individual variability with the use of a selection criterion based on a minimal time of exploration for both objects during each session. In this protocol, we describe the three most commonly used variants, containing long (3 d), short (1 d) or no habituation phases. Thus, with a short intersession interval (e.g., 6 h), this procedure can be performed in 4, 2 or 1 d, respectively, according to the duration of the habituation phase. This protocol should allow for the comparison of results from different studies, while permitting adaption of the protocol to the constraints of the experimenter.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic plasticity, memory and the hippocampus: a neural network approach to causality.

            Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Alzheimer's disease

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                24 January 2019
                2019
                : 10
                : 2
                Affiliations
                [1] 1Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University , Incheon, South Korea
                [2] 2Neuroscience Research Institute, Gachon University , Incheon, South Korea
                [3] 3Department of Pharmacology, Gachon University of Medicine and Science , Incheon, South Korea
                Author notes

                Edited by: Bjorn Johansson, Karolinska Institute (KI), Sweden

                Reviewed by: Wladyslaw Lason, Institute of Pharmacology (PAN), Poland; Ying Xu, University at Buffalo, United States

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2019.00002
                6353859
                a917e3a9-eaae-421e-9f06-a426a6eb76cc
                Copyright © 2019 Park, Kang, Nam, Suh and Chang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 August 2018
                : 04 January 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 45, Pages: 13, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                alzheimer’s disease,polygala tenuifolia willdenow,psm-04,neuroprotection,5xfad mice

                Comments

                Comment on this article