39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Environmental Endocrine Disruptors on Pubertal Development

      Journal of Clinical Research in Pediatric Endocrinology
      Galenos Yayinevi

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Exposure to bisphenol A advances puberty.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development.

            Premature breast development (thelarche) is the growth of mammary tissue in girls younger than 8 years of age without other manifestations of puberty. Puerto Rico has the highest known incidence of premature thelarche ever reported. In the last two decades since this serious public health anomaly has been observed, no explanation for this phenomenon has been found. Some organic pollutants, including pesticides and some plasticizers, can disrupt normal sexual development in wildlife, and many of these have been widely used in Puerto Rico. This investigation was designed to identify pollutants in the serum of Puerto Rican girls with premature thelarche. A method for blood serum analysis was optimized and validated using pesticides and phthalate esters as model compounds of endocrine-disrupting chemicals. Recovery was > 80% for all compounds. We performed final detection by gas chromatography/mass spectrometry. We analyzed 41 serum samples from thelarche patients and 35 control samples. No pesticides or their metabolite residues were detected in the serum of the study or control subjects. Significantly high levels of phthalates [dimethyl, diethyl, dibutyl, and di-(2-ethylhexyl)] and its major metabolite mono-(2-ethylhexyl) phthalate were identified in 28 (68%) samples from thelarche patients. Of the control samples analyzed, only one showed significant levels of di-isooctyl phthalate. The phthalates that we identified have been classified as endocrine disruptors. This study suggests a possible association between plasticizers with known estrogenic and antiandrogenic activity and the cause of premature breast development in a human female population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland.

              Exposure to estrogens throughout a woman's life, including the period of intrauterine development, is a risk factor for the development of breast cancer. The increased incidence of breast cancer noted during the last 50 years may have been caused, in part, by exposure of women to estrogen-mimicking chemicals that are released into the environment. Here, we investigated the effects of fetal exposure to one such chemical, bisphenol A (BPA), on development of the mammary gland. CD-1 mice were exposed in utero to low, presumably environmentally relevant doses of BPA (25 and 250 microg/kg body weight), and their mammary glands were assessed at 10 days, 1 mo, and 6 mo of age. Mammary glands of BPA-exposed mice showed differences in the rate of ductal migration into the stroma at 1 mo of age and a significant increase in the percentage of ducts, terminal ducts, terminal end buds, and alveolar buds at 6 mo of age. The percentage of cells that incorporated BrdU was significantly decreased within the epithelium at 10 days of age and increased within the stroma at 6 mo of age. These changes in histoarchitecture, coupled with an increased presence of secretory product within alveoli, resemble those of early pregnancy, and they suggest a disruption of the hypothalamic-pituitary-ovarian axis and/or misexpression of developmental genes. The altered relationship in DNA synthesis between the epithelium and stroma and the increase in terminal ducts and terminal end buds are striking, because these changes are associated with carcinogenesis in both rodents and humans.
                Bookmark

                Author and article information

                Journal
                10.4274/jcrpe.v3i1.01

                Comments

                Comment on this article