Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review

      , , ,
      Environmental Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Environmental Chemicals in Pregnant Women in the United States: NHANES 2003–2004

          Background Exposure to chemicals during fetal development can increase the risk of adverse health effects, and while biomonitoring studies suggest pregnant women are exposed to chemicals, little is known about the extent of multiple chemicals exposures among pregnant women in the United States. Objective We analyzed biomonitoring data from the National Health and Nutritional Examination Survey (NHANES) to characterize both individual and multiple chemical exposures in U.S. pregnant women. Methods We analyzed data for 163 chemical analytes in 12 chemical classes for subsamples of 268 pregnant women from NHANES 2003–2004, a nationally representative sample of the U.S. population. For each chemical analyte, we calculated descriptive statistics. We calculated the number of chemicals detected within the following chemical classes: polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), organochlorine pesticides, and phthalates and across multiple chemical classes. We compared chemical analyte concentrations for pregnant and nonpregnant women using least-squares geometric means, adjusting for demographic and physiological covariates. Results The percentage of pregnant women with detectable levels of an individual chemical ranged from 0 to 100%. Certain polychlorinated biphenyls, organochlorine pesticides, PFCs, phenols, PBDEs, phthalates, polycyclic aromatic hydrocarbons, and perchlorate were detected in 99–100% of pregnant women. The median number of detected chemicals by chemical class ranged from 4 of 12 PFCs to 9 of 13 phthalates. Across chemical classes, median number ranged from 8 of 17 chemical analytes to 50 of 71 chemical analytes. We found, generally, that levels in pregnant women were similar to or lower than levels in nonpregnant women; adjustment for covariates tended to increase levels in pregnant women compared with nonpregnant women. Conclusions Pregnant women in the U.S. are exposed to multiple chemicals. Further efforts are warranted to understand sources of exposure and implications for policy making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phthalates: toxicology and exposure.

            Phthalates are used as plasticizers in PVC plastics. As the phthalate plasticizers are not chemically bound to PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuff, other materials, etc. Consumer products containing phthalates can result in human exposure through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Humans are exposed through ingestion, inhalation, and dermal exposure during their whole lifetime, including intrauterine development. This paper presents an overview on current risk assessments done by expert panels as well as on exposure assessment data, based on ambient and on current human biomonitoring results. Some phthalates are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. Exposure assessment via modelling ambient data give hints that the exposure of children to phthalates exceeds that in adults. Current human biomonitoring data prove that the tolerable intake of children is exceeded to a considerable degree, in some instances up to 20-fold. Very high exposures to phthalates can occur via medical treatment, i.e. via use of medical devices containing DEHP or medicaments containing DBP phthalate in their coating. Because of their chemical properties exposure to phthalates does not result in bioaccumulation. However, health concern is raised regarding the developmental and/or reproductive toxicity of phthalates, even in environmental concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human Reference Population

              Bisphenol A (BPA) is used to manufacture polycarbonate plastic and epoxy resins, which are used in baby bottles, as protective coatings on food containers, and for composites and sealants in dentistry. 4-Nonylphenol (NP) is used to make nonylphenol ethoxylates, nonionic surfactants applied as emulsifying, wetting, dispersing, or stabilizing agents in industrial, agricultural, and domestic consumer products. The potential for human exposure to BPA and NP is high because of their widespread use. We measured BPA and NP in archived urine samples from a reference population of 394 adults in the United States using isotope-dilution gas chromatography/mass spectrometry. The concentration ranges of BPA and NP were similar to those observed in other human populations. BPA was detected in 95% of the samples examined at concentrations ≥0.1 μg/L urine; the geometric mean and median concentrations were 1.33 μg/L (1.36 μg/g creatinine) and 1.28 μg/L (1.32 μg/g creatinine), respectively; the 95th percentile concentration was 5.18 μg/L (7.95 μg/g creatinine). NP was detected in 51% of the samples examined ≥0.1 μg/L. The median and 95th percentile concentrations were < 0.1 μg/L and 1.57 μg/L (1.39 μg/g creatinine), respectively. The frequent detection of BPA suggests widespread exposure to this compound in residents of the United States. The lower frequency of detection of NP than of BPA could be explained by a lower exposure of humans to NP, by different pharmacokinetic factors (i.e., absorption, distribution, metabolism, elimination), by the fact that 4-n-nonylphenol—the measured NP isomer—represents a small percentage of the NP used in commercial mixtures, or a combination of all of the above. Additional research is needed to determine the best urinary biomarker(s) to assess exposure to NP. Despite the sample population’s nonrepresentativeness of the U.S. population (although sample weights were used to improve the extent to which the results represent the U.S. population) and relatively small size, this study provides the first reference range of human internal dose levels of BPA and NP in a demographically diverse human population.
                Bookmark

                Author and article information

                Journal
                Environmental Research
                Environmental Research
                Elsevier BV
                00139351
                November 2016
                November 2016
                : 151
                :
                : 251-264
                Article
                10.1016/j.envres.2016.07.011
                27504873
                ec63473e-5e31-445f-883e-a842185034a9
                © 2016
                History

                Comments

                Comment on this article