24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Canadia spinosa and the early evolution of the annelid nervous system

      ,
      Science Advances
      American Association for the Advancement of Science (AAAS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Annelid worms are a disparate, primitively segmented clade of bilaterians that first appear during the early Cambrian Period. Reconstructing their early evolution is complicated by the extreme morphological diversity in early diverging lineages, rapid diversification, and sparse fossil record. Canadia spinosa, a Burgess Shale fossil polychaete, is redescribed as having palps with feeding grooves, a dorsal median antenna and biramous parapodia associated with the head and flanking a ventral mouth. Carbonaceously preserved features are identified as a terminal brain, circumoral connectives, a midventral ganglionated nerve cord and prominent parapodial nerves. Phylogenetic analysis recovers neuroanatomically simple extant taxa as the sister group of other annelids, but the phylogenetic position of Canadia suggests that the annelid ancestor was reasonably complex neuroanatomically and that reduction of the nervous system occurred several times independently in the subsequent 500 million years of annelid evolution.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Illuminating the base of the annelid tree using transcriptomics.

          Annelida is one of three animal groups possessing segmentation and is central in considerations about the evolution of different character traits. It has even been proposed that the bilaterian ancestor resembled an annelid. However, a robust phylogeny of Annelida, especially with respect to the basal relationships, has been lacking. Our study based on transcriptomic data comprising 68,750-170,497 amino acid sites from 305 to 622 proteins resolves annelid relationships, including Chaetopteridae, Amphinomidae, Sipuncula, Oweniidae, and Magelonidae in the basal part of the tree. Myzostomida, which have been indicated to belong to the basal radiation as well, are now found deeply nested within Annelida as sister group to Errantia in most analyses. On the basis of our reconstruction of a robust annelid phylogeny, we show that the basal branching taxa include a huge variety of life styles such as tube dwelling and deposit feeding, endobenthic and burrowing, tubicolous and filter feeding, and errant and carnivorous forms. Ancestral character state reconstruction suggests that the ancestral annelid possessed a pair of either sensory or grooved palps, bicellular eyes, biramous parapodia bearing simple chaeta, and lacked nuchal organs. Because the oldest fossil of Annelida is reported for Sipuncula (520 Ma), we infer that the early diversification of annelids took place at least in the Lower Cambrian. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cladistics and polychaetes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans

              Chaetognaths (arrow worms) are an enigmatic group of marine animals whose phylogenetic position remains elusive, in part because they display a mix of developmental and morphological characters associated with other groups [1, 2]. In particular, it remains unclear whether they are a sister group to protostomes [1, 2], one of the principal animal superclades, or whether they bear a closer relationship with some spiralian phyla [3, 4]. Addressing the phylogenetic position of chaetognaths and refining our understanding of relationships among spiralians are essential to fully comprehend character changes during bilaterian evolution [5]. To tackle these questions, we generated new transcriptomes for ten chaetognath species, compiling an extensive phylogenomic dataset that maximizes data occupancy and taxonomic representation. We employed inference methods that consider rate and compositional heterogeneity across taxa to avoid limitations of earlier analyses [6]. In this way, we greatly improved the resolution of the protostome tree of life. We find that chaetognaths cluster together with rotifers, gnathostomulids, and micrognathozoans within an expanded Gnathifera clade and that this clade is the sister group to other spiralians [7, 8]. Our analysis shows that several previously proposed groupings are likely due to systematic error, and we propose a revised organization of Lophotrochozoa with three main clades: Tetraneuralia (mollusks and entoprocts), Lophophorata (brachiopods, phoronids, and ectoprocts), and a third unnamed clade gathering annelids, nemerteans, and platyhelminthes. Consideration of classical morphological, developmental, and genomic characters in light of this topology indicates secondary loss as a fundamental trend in spiralian evolution.
                Bookmark

                Author and article information

                Journal
                Science Advances
                Sci. Adv.
                American Association for the Advancement of Science (AAAS)
                2375-2548
                September 11 2019
                September 2019
                September 11 2019
                September 2019
                : 5
                : 9
                : eaax5858
                Article
                10.1126/sciadv.aax5858
                c373990f-3491-44c9-9d60-4bfb0f18ec25
                © 2019
                History

                Comments

                Comment on this article