16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soluble CD54 induces human endothelial cells ex vivo expansion useful for cardiovascular regeneration and tissue engineering application

      IJC Heart & Vasculature
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering--current challenges and expanding opportunities.

          Tissue engineering can be used to restore, maintain, or enhance tissues and organs. The potential impact of this field, however, is far broader-in the future, engineered tissues could reduce the need for organ replacement, and could greatly accelerate the development of new drugs that may cure patients, eliminating the need for organ transplants altogether.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HMEC-1: establishment of an immortalized human microvascular endothelial cell line.

            The study of human microvascular endothelial cells has been limited, because these cells are difficult to isolate in pure culture, are fastidious in their in vitro growth requirements, and have a very limited lifespan. In order to overcome these difficulties, we have transfected human dermal microvascular endothelial cells (HMEC) with a PBR-322-based plasmid containing the coding region for the simian virus 40 A gene product, large T antigen, and succeeded in immortalizing them. These cells, termed CDC/EU.HMEC-1 (HMEC-1), have been passaged 95 times to date and show no signs of senescence, whereas normal microvascular endothelial cells undergo senescence at passages 8-10. HMEC-1 exhibit typical cobblestone morphology when grown in monolayer culture, express and secrete von Willebrand's Factor, take up acteylated low-density lipoprotein, and rapidly form tubes when cultured on matrigel. HMEC-1 grow to densities three to seven times higher than microvascular endothelial cells and require much less stringent growth medium. HMEC-1 will grow in the absence of human serum, whereas microvascular endothelial cells require culture medium supplemented with 30% human serum. These cells express other cell-surface molecules typically associated with endothelial cells, including CD31 and CD36 and epitopes identified by monoclonal antibodies EN4 and PAL-E. They also express the cell adhesion molecules ICAM-1 and CD44 and following stimulation with interferon-gamma express major histocompatibility complex class II antigens. HMEC-1 specifically bind lymphocytes in cell adhesion assays. Thus HMEC-1 is the first immortalized human microvascular endothelial cell line that retains the morphologic, phenotypic, and functional characteristics of normal human microvascular endothelial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linking endothelial dysfunction with endothelial cell activation.

              K K Liao (2013)
              The thin layer of cells that lines the interior of blood vessels, known as the endothelium, plays a complex role in vascular biology. The endothelium mediates blood vessel tone, hemostasis, neutrophil recruitment, hormone trafficking, and fluid filtration. Endothelial dysfunction, as defined by a lack of NO, has been linked to a variety of disease states, including atherosclerosis, diabetes mellitus, coronary artery disease, hypertension, and hypercholesterolemia. Indeed, restoration of endothelial function is one of the earliest recognizable benefits of statin therapy. In 1995, James Liao and colleagues published a study in the JCI demonstrating that NO is a vascular protective factor that limits endothelial activation and prevents leukocyte adhesion to the vessel wall.
                Bookmark

                Author and article information

                Journal
                10.1016/j.ijcha.2015.01.004
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article