19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glutathione is the principal intracellular antioxidant buffer against oxidative stress and mainly exists in the forms of reduced glutathione (GSH) and oxidized glutathione (GSSG). The processes of glutathione synthesis, transport, utilization, and metabolism are tightly controlled to maintain intracellular glutathione homeostasis and redox balance. As for cancer cells, they exhibit a greater ROS level than normal cells in order to meet the enhanced metabolism and vicious proliferation; meanwhile, they also have to develop an increased antioxidant defense system to cope with the higher oxidant state. Growing numbers of studies have implicated that altering the glutathione antioxidant system is associated with multiple forms of programmed cell death in cancer cells. In this review, we firstly focus on glutathione homeostasis from the perspectives of glutathione synthesis, distribution, transportation, and metabolism. Then, we discuss the function of glutathione in the antioxidant process. Afterwards, we also summarize the recent advance in the understanding of the mechanism by which glutathione plays a key role in multiple forms of programmed cell death, including apoptosis, necroptosis, ferroptosis, and autophagy. Finally, we highlight the glutathione-targeting therapeutic approaches toward cancers. A comprehensive review on the glutathione homeostasis and the role of glutathione depletion in programmed cell death provide insight into the redox-based research concerning cancer therapeutics.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.

          Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy

            Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration 1,2 . Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo including organelles, proteins, or intracellular pathogens are targeted for selective autophagy is limited 3 . We employed quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins, including cargo receptors. Like known cargo receptors, NCOA4 was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo-receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species 4 but is degraded via autophagy to release iron 5,6 through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin leads to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy) critical for iron homeostasis and provides a resource for further dissection of autophagosomal cargo-receptor connectivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of GPX4 in ferroptosis and its pharmacological implication

              Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation and metabolic constraints. Dependence on NADPH/H+, polyunsaturated fatty acid metabolism, and the mevalonate and glutaminolysis metabolic pathways have been implicated in this novel form of regulated necrotic cell death. Genetic studies performed in cells and mice established the selenoenzyme glutathione peroxidase (GPX4) as the key regulator of this form of cell death. Besides these genetic models, the identification of a series of small molecule ferroptosis-specific inhibitors and inducers have not only helped in the delineation of the molecular underpinnings of ferroptosis but they might also prove highly beneficial when tipping the balance between cell death inhibition and induction in the context of degenerative diseases and cancer, respectively. In the latter, the recent recognition that a subset of cancer cell lines including certain triple negative breast cancer cells and those of therapy-resistant high-mesenchymal cell state present a high dependence on this lipid make-up offers unprecedented opportunities to eradicate difficult to treat cancers. Due to the rapidly growing interest in this form of cell death, we provide an overview herein what we know about this field today and its future translational impact.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxidative Medicine and Cellular Longevity
                Oxidative Medicine and Cellular Longevity
                Hindawi Limited
                1942-0900
                1942-0994
                June 10 2019
                June 10 2019
                : 2019
                : 1-16
                Affiliations
                [1 ]School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
                [2 ]Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
                [3 ]Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China
                [4 ]Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China
                [5 ]Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
                Article
                10.1155/2019/3150145
                be78a570-4526-4d00-8762-fb8654538b3c
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article