26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS

      Journal of Ginseng Research
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Ginseng pharmacology: multiple constituents and multiple actions.

          Ginseng is a highly valued herb in the Far East and has gained popularity in the West during the last decade. There is extensive literature on the beneficial effects of ginseng and its constituents. The major active components of ginseng are ginsenosides, a diverse group of steroidal saponins, which demonstrate the ability to target a myriad of tissues, producing an array of pharmacological responses. However, many mechanisms of ginsenoside activity still remain unknown. Since ginsenosides and other constituents of ginseng produce effects that are different from one another, and a single ginsenoside initiates multiple actions in the same tissue, the overall pharmacology of ginseng is complex. The ability of ginsenosides to independently target multireceptor systems at the plasma membrane, as well as to activate intracellular steroid receptors, may explain some pharmacological effects. This commentary aims to review selected effects of ginseng and ginsenosides and describe their possible modes of action. Structural variability of ginsenosides, structural and functional relationship to steroids, and potential targets of action are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MS(n)-based multicomponent quantification fingerprint.

            The purpose of this study is to evaluate the steaming-induced chemical transformation of red ginseng manufactured from fresh ginseng by means of simultaneous quantitative and qualitative analyses with a combinative high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS(n)) technique. Thirty-six ginsenosides were identified in red ginseng and white ginseng by comparing the mass spectrum and/or matching the empirical molecular formula with that of known published compounds, and 11 of them were determined to be newly generated during the red ginseng preparatory process. The mechanisms involved were further deduced to be hydrolysis, dehydration, isomerization, and decarboxylation at C-20, and hydrolysis also occurs at C-3 or C-6 of the original ginsenosides through the mimic process of steaming and heating in laboratory. The multicomponent quantification fingerprint of ginseng was also established by HPLC-UV method, and the contents of 12 ginsenosides in red and white ginsengs from different sources were determined simultaneously. The ratio of the total content of determined malonyl ginsenosides to the corresponding neutral ginsenosides (T(m-PPD)/T(PPD)) in white ginseng ranged from 0.46 to 0.62 and from 0 to 0.19 in red ginseng. The validated method is expected to provide an effective approach to standardize the processing procedures of ginseng products and regulate the usage of ginseng in Traditional Chinese Medical prescription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liquid chromatographic determination of less polar ginsenosides in processed ginseng.

              Reversed-phase LC with an evaporative light scattering detector (ELSD) is used for the determination of less polar ginsenosides in processed ginseng. These ginsenosides include ginsenosides F4, Rg3, Rg5, Rg6, Rk1, Rk3, Rs3, Rs4, and Rs5. The method used a C18-bonded silica column with a CH3CN/H2O/CH3COOH gradient elution. (20R) and (20S) epimers and geometric isomers at the C-20 position of ginsenosides, which are not generally separated by amino columns, were now clearly separated.
                Bookmark

                Author and article information

                Journal
                10.1016/j.jgr.2015.12.001
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article