16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin.

      Stem Cell Research & Therapy
      Adult, Adult Stem Cells, cytology, physiology, Amyloid Precursor Protein Secretases, metabolism, Amyloid beta-Protein Precursor, Animals, Cell Proliferation, drug effects, Decidua, Dipeptides, pharmacology, Dose-Response Relationship, Drug, Ectoderm, Enzyme Activation, Female, Humans, MAP Kinase Signaling System, Mesenchymal Stromal Cells, Mesoderm, Mice, Neurons, Peptide Fragments, Pregnancy, Protease Inhibitors

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soluble amyloid precursor protein α (sAPPα) is a proteolyte of APP cleavage by α-secretase. The significance of the cleavage and the physiological role of sAPPα are unknown. A crystal structure of a region of the amino terminal of sAPPα reveals a domain that is similar to cysteine-rich growth factors. While a previous study implicates sAPPα in the regulation of neural progenitor cell proliferation in the subventricular zone of adult mice, the ubiquitous expression of APP suggests that its role as a growth factor might be broader. sAPPα and α-secretase activities were determined in neural progenitor cells (NPCs), mesenchymal stem cells (MSC) and human decidua parietalis placenta stem cells (hdPSC). Inhibition of α-secretase was achieved by treatment with the matrixmetalloproteinase inhibitor GM6001, and proliferation was determined using clonogenic and immunocytochemical analysis of cell-lineage markers. Recovery of proliferation was achieved by supplementing GM6001-treated cells with recombinant soluble APPα. Expression of APP and its cellular localization in the subventricular zone was determined by Western blot and immunohistochemical analyses of APP wild type and knockout tissue. Alterations in pERK and pAKT expression as a function of soluble APPα production and activity in NPCs were determined by Western blot analysis. Here we show that sAPPα is a proliferation factor of adult NPCs, MSCs and hdpPSC. Inhibition of α-secretase activity reduces proliferation of these stem cell populations in a dose-dependent manner. Stem cell proliferation can be recovered by the addition of sAPPα in a dose-dependent manner, but not of media depleted of sAPPα. Importantly, sAPPα operates independently of the prominent proliferation factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but in association with ERK signaling and MAP-kinase signaling pathways. Levels of sAPPα and putative α-secretase, ADAM10, are particularly high in the subventricular zone of adult mice, suggesting a role for sAPPα in regulation of NPCs in this microenvironment. These results determine a physiological function for sAPPα and identify a new proliferation factor of progenitor cells of ectodermal and mesodermal origin. Further, our studies elucidate a potential pathway for sAPPα signaling through MAP kinase activation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Neurogenesis in adult subventricular zone.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells.

            Neural stem cells in the subventricular zone (SVZ) continue to generate new neurons in the adult brain. SVZ cells exposed to EGF in culture grow to form neurospheres that are multipotent and self-renewing. We show here that the majority of these EGF-responsive cells are not derived from relatively quiescent stem cells in vivo, but from the highly mitotic, Dlx2(+), transit-amplifying C cells. When exposed to EGF, C cells downregulate Dlx2, arrest neuronal production, and become highly proliferative and invasive. Killing Dlx2(+) cells dramatically reduces the in vivo response to EGF and neurosphere formation in vitro. Furthermore, purified C cells are 53-fold enriched for neurosphere generation. We conclude that transit-amplifying cells retain stem cell competence under the influence of growth factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease.

              Amyloid beta peptide (Abeta), the principal proteinaceous component of amyloid plaques in brains of Alzheimer's disease patients, is derived by proteolytic cleavage of the amyloid precursor protein (APP). Proteolytic cleavage of APP by a putative alpha-secretase within the Abeta sequence precludes the formation of the amyloidogenic peptides and leads to the release of soluble APPsalpha into the medium. By overexpression of a disintegrin and metalloprotease (ADAM), classified as ADAM 10, in HEK 293 cells, basal and protein kinase C-stimulated alpha-secretase activity was increased severalfold. The proteolytically activated form of ADAM 10 was localized by cell surface biotinylation in the plasma membrane, but the majority of the proenzyme was found in the Golgi. These results support the view that APP is cleaved both at the cell surface and along the secretory pathway. Endogenous alpha-secretase activity was inhibited by a dominant negative form of ADAM 10 with a point mutation in the zinc binding site. Studies with purified ADAM 10 and Abeta fragments confirm the correct alpha-secretase cleavage site and demonstrate a dependence on the substrate's conformation. Our results provide evidence that ADAM 10 has alpha-secretase activity and many properties expected for the proteolytic processing of APP. Increases of its expression and activity might be beneficial for the treatment of Alzheimer's disease.
                Bookmark

                Author and article information

                Comments

                Comment on this article