21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autoimmune Encephalitis Misdiagnosis in Adults

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Importance

          Autoimmune encephalitis misdiagnosis can lead to harm.

          Objective

          To determine the diseases misdiagnosed as autoimmune encephalitis and potential reasons for misdiagnosis.

          Design, Setting, and Participants

          This retrospective multicenter study took place from January 1, 2014, to December 31, 2020, at autoimmune encephalitis subspecialty outpatient clinics including Mayo Clinic (n = 44), University of Oxford (n = 18), University of Texas Southwestern (n = 18), University of California, San Francisco (n = 17), University of Washington in St Louis (n = 6), and University of Utah (n = 4). Inclusion criteria were adults (age ≥18 years) with a prior autoimmune encephalitis diagnosis at a participating center or other medical facility and a subsequent alternative diagnosis at a participating center. A total of 393 patients were referred with an autoimmune encephalitis diagnosis, and of those, 286 patients with true autoimmune encephalitis were excluded.

          Main Outcomes and Measures

          Data were collected on clinical features, investigations, fulfillment of autoimmune encephalitis criteria, alternative diagnoses, potential contributors to misdiagnosis, and immunotherapy adverse reactions.

          Results

          A total of 107 patients were misdiagnosed with autoimmune encephalitis, and 77 (72%) did not fulfill diagnostic criteria for autoimmune encephalitis. The median (IQR) age was 48 (35.5-60.5) years and 65 (61%) were female. Correct diagnoses included functional neurologic disorder (27 [25%]), neurodegenerative disease (22 [20.5%]), primary psychiatric disease (19 [18%]), cognitive deficits from comorbidities (11 [10%]), cerebral neoplasm (10 [9.5%]), and other (18 [17%]). Onset was acute/subacute in 56 (52%) or insidious (>3 months) in 51 (48%). Magnetic resonance imaging of the brain was suggestive of encephalitis in 19 of 104 patients (18%) and cerebrospinal fluid (CSF) pleocytosis occurred in 16 of 84 patients (19%). Thyroid peroxidase antibodies were elevated in 24 of 62 patients (39%). Positive neural autoantibodies were more frequent in serum than CSF (48 of 105 [46%] vs 7 of 91 [8%]) and included 1 or more of GAD65 (n = 14), voltage-gated potassium channel complex (LGI1 and CASPR2 negative) (n = 10), N-methyl- d-aspartate receptor by cell-based assay only (n = 10; 6 negative in CSF), and other (n = 18). Adverse reactions from immunotherapies occurred in 17 of 84 patients (20%). Potential contributors to misdiagnosis included overinterpretation of positive serum antibodies (53 [50%]), misinterpretation of functional/psychiatric, or nonspecific cognitive dysfunction as encephalopathy (41 [38%]).

          Conclusions and Relevance

          When evaluating for autoimmune encephalitis, a broad differential diagnosis should be considered and misdiagnosis occurs in many settings including at specialized centers. In this study, red flags suggesting alternative diagnoses included an insidious onset, positive nonspecific serum antibody, and failure to fulfill autoimmune encephalitis diagnostic criteria. Autoimmune encephalitis misdiagnosis leads to morbidity from unnecessary immunotherapies and delayed treatment of the correct diagnosis.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease

          In 2011, the National Institute on Aging and Alzheimer’s Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer’s disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer’s Association to update and unify the 2011 guidelines. This unifying update is labeled a “research framework” because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer’s Association Research Framework, Alzheimer’s disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A clinical approach to diagnosis of autoimmune encephalitis.

            Encephalitis is a severe inflammatory disorder of the brain with many possible causes and a complex differential diagnosis. Advances in autoimmune encephalitis research in the past 10 years have led to the identification of new syndromes and biomarkers that have transformed the diagnostic approach to these disorders. However, existing criteria for autoimmune encephalitis are too reliant on antibody testing and response to immunotherapy, which might delay the diagnosis. We reviewed the literature and gathered the experience of a team of experts with the aims of developing a practical, syndrome-based diagnostic approach to autoimmune encephalitis and providing guidelines to navigate through the differential diagnosis. Because autoantibody test results and response to therapy are not available at disease onset, we based the initial diagnostic approach on neurological assessment and conventional tests that are accessible to most clinicians. Through logical differential diagnosis, levels of evidence for autoimmune encephalitis (possible, probable, or definite) are achieved, which can lead to prompt immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III).

              NHANES III measured serum TSH, total serum T(4), antithyroperoxidase (TPOAb), and antithyroglobulin (TgAb) antibodies from a sample of 17,353 people aged > or =12 yr representing the geographic and ethnic distribution of the U.S. population. These data provide a reference for other studies of these analytes in the U.S. For the 16,533 people who did not report thyroid disease, goiter, or taking thyroid medications (disease-free population), we determined mean concentrations of TSH, T(4), TgAb, and TPOAb. A reference population of 13,344 people was selected from the disease-free population by excluding, in addition, those who were pregnant, taking androgens or estrogens, who had thyroid antibodies, or biochemical hypothyroidism or hyperthyroidism. The influence of demographics on TSH, T(4), and antibodies was examined. Hypothyroidism was found in 4.6% of the U.S. population (0.3% clinical and 4.3% subclinical) and hyperthyroidism in 1.3% (0.5% clinical and 0.7% subclinical). (Subclinical hypothyroidism is used in this paper to mean mild hypothyroidism, the term now preferred by the American Thyroid Association for the laboratory findings described.) For the disease-free population, mean serum TSH was 1.50 (95% confidence interval, 1.46-1.54) mIU/liter, was higher in females than males, and higher in white non-Hispanics (whites) [1.57 (1.52-1.62) mIU/liter] than black non-Hispanics (blacks) [1.18 (1.14-1.21) mIU/liter] (P < 0.001) or Mexican Americans [1.43 (1.40-1.46) mIU/liter] (P < 0.001). TgAb were positive in 10.4 +/- 0.5% and TPOAb, in 11.3 +/- 0.4%; positive antibodies were more prevalent in women than men, increased with age, and TPOAb were less prevalent in blacks (4.5 +/- 0.3%) than in whites (12.3 +/- 0.5%) (P < 0.001). TPOAb were significantly associated with hypo or hyperthyroidism, but TgAb were not. Using the reference population, geometric mean TSH was 1.40 +/- 0.02 mIU/liter and increased with age, and was significantly lower in blacks (1.18 +/- 0.02 mIU/liter) than whites (1.45 +/- 0.02 mIU/liter) (P < 0.001) and Mexican Americans (1.37 +/- 0.02 mIU/liter) (P < 0.001). Arithmetic mean total T(4) was 112.3 +/- 0.7 nmol/liter in the disease-free population and was consistently higher among Mexican Americans in all populations. In the reference population, mean total T(4) in Mexican Americans was (116.3 +/- 0.7 nmol/liter), significantly higher than whites (110.0 +/- 0.8 nmol/liter) or blacks (109.4 +/- 0.8 nmol/liter) (P < 0.0001). The difference persisted in all age groups. In summary, TSH and the prevalence of antithyroid antibodies are greater in females, increase with age, and are greater in whites and Mexican Americans than in blacks. TgAb alone in the absence of TPOAb is not significantly associated with thyroid disease. The lower prevalence of thyroid antibodies and lower TSH concentrations in blacks need more research to relate these findings to clinical status. A large proportion of the U.S. population unknowingly have laboratory evidence of thyroid disease, which supports the usefulness of screening for early detection.
                Bookmark

                Author and article information

                Journal
                JAMA Neurology
                JAMA Neurol
                American Medical Association (AMA)
                2168-6149
                November 28 2022
                Affiliations
                [1 ]Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
                [2 ]Center for Multiple Sclerosis and Autoimmune Neurology, Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota
                [3 ]Department of Neurology, University of California, San Francisco (UCSF), San Francisco
                [4 ]Department of Neurology, Mayo Clinic, Jacksonville, Florida
                [5 ]Department of Neurology, University of Texas Southwestern Medical Center, Dallas
                [6 ]Autoimmune Neurology Group, West Wing, Level 3, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
                [7 ]Movement Disorders Unit, Department of Neurology, Tel Aviv Sourazky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
                [8 ]Washington University in St Louis, St Louis, Missouri
                [9 ]Department of Neurology, University of Utah, Salt Lake City
                [10 ]Larner College of Medicine at the University of Vermont, Burlington
                [11 ]Graduate School of Health Sciences, Mayo Clinic College of Medicine, Rochester, Minnesota
                Article
                10.1001/jamaneurol.2022.4251
                48aa09ad-8549-4043-9f46-8856039cad60
                © 2022
                History

                Comments

                Comment on this article