26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next-generation sequencing (NGS) can identify novel cancer targets. However, interpreting the molecular findings and accessing drugs/clinical trials is challenging. Furthermore, many tumors show resistance to monotherapies. To implement a precision strategy, we initiated a multidisciplinary (basic/translational/clinical investigators, bioinformaticians, geneticists, and physicians from multiple specialties) molecular tumor board (MTB), which included a project manager to facilitate obtaining clinical-grade biomarkers (blood/tissue NGS, specific immunohistochemistry/RNA expression including for immune-biomarkers, per physician discretion) and medication-acquisition specialists/clinical trial coordinators/navigators to assist with medication access. The MTB comprehensively reviewed patient characteristics to develop N-of-One treatments implemented by the treating physician’s direction under the auspices of a master protocol. Overall, 265/429 therapy-evaluable patients (62%) were matched to ≥1 recommended drug. Eighty-six patients (20%) matched to all drugs recommended by MTB, including combinatorial approaches, while 38% received physician’s choice regimen, generally with unmatched approach/low degree of matching. Our results show that patients who receive MTB-recommended regimens (versus physician choice) have significantly longer progression-free (PFS) and overall survival (OS), and are better matched to therapy. High (≥50%) versus low (<50%) Matching Score therapy (roughly reflecting therapy matched to ≥50% versus <50% of alterations) independently correlates with longer PFS (hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.50–0.80; P < 0.001) and OS (HR, 0.67; 95% CI, 0.50–0.90; P = 0.007) and higher stable disease ≥6 months/partial/complete remission rate (52.1% versus 30.4% P < 0.001) (all multivariate). In conclusion, patients who receive MTB-based therapy are better matched to their genomic alterations, and the degree of matching is an independent predictor of improved oncologic outcomes including survival.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          RECIST 1.1-Update and clarification: From the RECIST committee.

          The Response Evaluation Criteria in Solid Tumours (RECIST) were developed and published in 2000, based on the original World Health Organisation guidelines first published in 1981. In 2009, revisions were made (RECIST 1.1) incorporating major changes, including a reduction in the number of lesions to be assessed, a new measurement method to classify lymph nodes as pathologic or normal, the clarification of the requirement to confirm a complete response or partial response and new methodologies for more appropriate measurement of disease progression. The purpose of this paper was to summarise the questions posed and the clarifications provided as an update to the 2009 publication.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study

              Cancer treatments have evolved from indiscriminate cytotoxic agents to selective genome- and immune-targeted drugs that have transformed outcomes for some malignancies. 1 Tumor complexity and heterogeneity suggest that the “precision medicine” paradigm of cancer therapy requires treatment to be personalized to the individual patient. 2–6 To date, precision oncology trials have been based upon molecular matching with predetermined monotherapies. 7–14 Several of these trials have been hindered by very low matching rates, often in the 5–10% range, 15 and low response rates. Low matching rates may be due to the use of limited gene panels, restrictive molecular matching algorithms, lack of drug availability or the deterioration and death of end-stage patients before therapy can be implemented. We hypothesized that personalized treatment with combination therapies would improve outcomes in patients with refractory malignancies. As a first test of this concept, we implemented a cross-institutional, prospective study (I-PREDICT, NCT02534675) that used tumor DNA sequencing and timely recommendations for individualized treatment with combination therapies. We found that administration of customized multi-drug regimens was feasible, with 49% of consented patients receiving personalized treatment. Targeting of a larger fraction of identified molecular alterations, yielding a higher “matching score,” was correlated with significantly improved disease control rates, as well as longer progression-free and overall survival rates, as compared to when fewer somatic alterations were targeted. Our findings suggest that the current clinical trial paradigm for precision oncology, which pairs one driver mutation with one drug, may be optimized by treating molecularly complex and heterogeneous cancers with combinations of customized agents.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2020
                October 02 2020
                December 2020
                : 11
                : 1
                Article
                10.1038/s41467-020-18613-3
                f3bae503-9df4-4aaa-b3ce-ad6759d48d2c
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article