19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature

      1 , 1 , 2 , 3 , 2 , 2 , 1
      eLife
      eLife Sciences Publications, Ltd

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hologenome concept proposes that microbes together with their hosting organism are an independent unit of selection. Motivated by this concept, we hypothesized that thermal acclimation in poikilothermic organisms is connected to their microbiome composition due to their inability to maintain their body temperature. To test this hypothesis, we used a unique experimental setup with a transgenerational selective breeding scheme for cold tolerance in tropical tilapias. We tested the effects of the selection on the gut microbiome and host transcriptomic response. Interestingly, we found that host genetic selection for thermal tolerance shapes microbiome composition and its response to cold. The microbiomes of cold-resistant fish showed higher resilience to temperature changes, indicating that the microbiome is shaped by its host's selection. These findings are consistent with the hologenome concept and highlight the connection between the host and its microbiome's response to the environment.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for a core gut microbiota in the zebrafish.

          Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.

            Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microbes Drive Evolution of Animals and Plants: the Hologenome Concept

              ABSTRACT The hologenome concept of evolution postulates that the holobiont (host plus symbionts) with its hologenome (host genome plus microbiome) is a level of selection in evolution. Multicellular organisms can no longer be considered individuals by the classical definitions of the term. Every natural animal and plant is a holobiont consisting of the host and diverse symbiotic microbes and viruses. Microbial symbionts can be transmitted from parent to offspring by a variety of methods, including via cytoplasmic inheritance, coprophagy, direct contact during and after birth, and the environment. A large number of studies have demonstrated that these symbionts contribute to the anatomy, physiology, development, innate and adaptive immunity, and behavior and finally also to genetic variation and to the origin and evolution of species. Acquisition of microbes and microbial genes is a powerful mechanism for driving the evolution of complexity. Evolution proceeds both via cooperation and competition, working in parallel.
                Bookmark

                Author and article information

                Journal
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                November 20 2018
                November 20 2018
                : 7
                Affiliations
                [1 ]Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
                [2 ]Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon LeZion, Israel
                [3 ]Department of Vegetable and Field Crops, Institute of Plant Science, Agricultural Research Organization, Rishon LeZion, Israel
                Article
                10.7554/eLife.36398
                06904172-686e-431f-a32d-0202f43778f7
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article