16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Genome-wide analysis of histone H3 lysine 4 trimethylation in peripheral blood mononuclear cells of minimal change nephrotic syndrome patients.

      American journal of nephrology
      Aged, CpG Islands, genetics, DNA Methylation, physiology, Epigenesis, Genetic, Female, Genome-Wide Association Study, Histones, metabolism, Humans, Leukocytes, Mononuclear, Lysine, Male, Middle Aged, Nephrosis, Lipoid, Oligonucleotide Array Sequence Analysis

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of the epigenome have attracted some interest in nephrology. However, to date, our knowledge about the alterations in histone modification in minimal change nephrotic syndrome (MCNS) is unknown. This study aimed to investigate the variations in histone H3 lysine 4 trimethylation (H3K4me3) in peripheral blood mononuclear cells of patients with MCNS. H3K4me3 variations were analyzed in peripheral blood mononuclear cells, from 15 MCNS patients and 15 healthy subjects, using the ChIP-chip approach. ChIP real-time PCR is used to validate the microarray results. In addition, mRNA expression and DNA methylation status can also be further analyzed by quantitative (q) RT-PCR and methyl-DNA immunoprecipitation-q PCR, respectively. 848 increased and 231 decreased H3K4me3 probes displaying significant H3K4me3 differences were found in MCNS patients compared with healthy subjects. The results of ChIP real-time PCR coincided well with the microarray. Expression analysis by qRT-PCR revealed positive correlations between mRNA and H3K4me3 levels. DNA methylation alterations were found on selected positive genes (IL4R, HIVEP3, HPSE2, CDH13 and PRKD2). In addition, we also found that there is an inverse relationship between H3K4me3 and promoter DNA methylation in MCNS patients. Our studies indicate that there are significant alterations of H3K4me3 in MCNS patients. These significant H3K4me3 candidates may help to explain the immunological disturbance involved in MCNS patients. Copyright 2009 S. Karger AG, Basel.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The diverse functions of histone lysine methylation.

          Covalent modifications of histone tails have fundamental roles in chromatin structure and function. One such modification, lysine methylation, has important functions in many biological processes that include heterochromatin formation, X-chromosome inactivation and transcriptional regulation. Here, we summarize recent advances in our understanding of how lysine methylation functions in these diverse biological processes, and raise questions that need to be addressed in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

            CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.

              Cells employ elaborate mechanisms to introduce structural and chemical variation into chromatin. Here, we focus on one such element of variation: methylation of lysine 4 in histone H3 (H3K4). We assess a growing body of literature, including treatment of how the mark is established, the patterns of methylation, and the functional consequences of this epigenetic signature. We discuss structural aspects of the H3K4 methyl recognition by the downstream effectors and propose a distinction between sequence-specific recruitment mechanisms and stabilization on chromatin through methyl-lysine recognition. Finally, we hypothesize how the unique properties of the polyvalent chromatin fiber and associated effectors may amplify small differences in methyl-lysine recognition, simultaneously allowing for a dynamic chromatin architecture.
                Bookmark

                Author and article information

                Comments

                Comment on this article