33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana

      Scientific Reports
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver.

          Microplastics have become emerging contaminants, causing widespread concern about their potential toxic effects. In this study, the uptake and tissue accumulation of polystyrene microplastics (PS-MPs) in zebrafish were detected, and the toxic effects in liver were investigated. The results showed that after 7 days of exposure, 5 μm diameter MPs accumulated in fish gills, liver, and gut, while 20 μm diameter MPs accumulated only in fish gills and gut. Histopathological analysis showed that both 5 μm and 70 nm PS-MPs caused inflammation and lipid accumulation in fish liver. PS-MPs also induced significantly increased activities of superoxide dismutase and catalase, indicating that oxidative stress was induced after treatment with MPs. In addition, metabolomic analysis suggested that exposure to MPs induced alterations of metabolic profiles in fish liver and disturbed the lipid and energy metabolism. These findings provide new insights into the toxic effects of MPs on fish.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plastics recycling: challenges and opportunities.

            Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel.

              Microplastics are present in marine habitats worldwide and laboratory studies show this material can be ingested, yet data on abundance in natural populations is limited. This study documents microplastics in 10 species of fish from the English Channel. 504 Fish were examined and plastics found in the gastrointestinal tracts of 36.5%. All five pelagic species and all five demersal species had ingested plastic. Of the 184 fish that had ingested plastic the average number of pieces per fish was 1.90±0.10. A total of 351 pieces of plastic were identified using FT-IR Spectroscopy; polyamide (35.6%) and the semi-synthetic cellulosic material, rayon (57.8%) were most common. There was no significant difference between the abundance of plastic ingested by pelagic and demersal fish. Hence, microplastic ingestion appears to be common, in relatively small quantities, across a range of fish species irrespective of feeding habitat. Further work is needed to establish the potential consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                10.1038/srep41323
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article