Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Jet schemes and invariant theory

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Let \(G\) be a complex reductive group and \(V\) a \(G\)-module. Then the \(m\)th jet scheme \(G_m\) acts on the \(m\)th jet scheme \(V_m\) for all \(m\geq 0\). We are interested in the invariant ring \(\mathcal{O}(V_m)^{G_m}\) and whether the map \(p_m^*\colon\mathcal{O}((V//G)_m) \rightarrow \mathcal{O}(V_m)^{G_m}\) induced by the categorical quotient map \(p\colon V\rightarrow V//G\) is an isomorphism, surjective, or neither. Using Luna's slice theorem, we give criteria for \(p_m^*\) to be an isomorphism for all \(m\), and we prove this when \(G=SL_n\), \(GL_n\), \(SO_n\), or \(Sp_{2n}\) and \(V\) is a sum of copies of the standard representation and its dual, such that \(V//G\) is smooth or a complete intersection. We classify all representations of \(\mathbb{C}^*\) for which \(p^*_{\infty}\) is surjective or an isomorphism. Finally, we give examples where \(p^*_m\) is surjective for \(m=\infty\) but not for finite \(m\), and where it is surjective but not injective.

          Related collections

          Author and article information

          Journal
          2011-12-29
          2015-06-08
          1112.6230

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          Final version, to appear in Annales de l'Institut Fourier
          math.AG math.GR math.RT

          Geometry & Topology, Algebra

          Comments

          Comment on this article

          Similar content 544