41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global Sequestration Potential of Increased Organic Carbon in Cropland Soils

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO2. There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26–53% of the target of the “4p1000 Initiative: Soils for Food Security and Climate”. The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Climate-smart soils.

          Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight 'state of the art' soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Modelling the role of agriculture for the 20th century global terrestrial carbon balance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantifying global soil carbon losses in response to warming

              The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Scientific Reports
                Sci Rep
                Springer Science and Business Media LLC
                2045-2322
                December 2017
                November 14 2017
                December 2017
                : 7
                : 1
                Article
                10.1038/s41598-017-15794-8
                136a0583-6679-46ce-8a61-abb82fb0b042
                © 2017

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article