8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HIV-1-infected individuals harbor a latent reservoir of infected CD4(+) T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.

          The capacity of HIV-1 to establish latent infection of CD4+ T cells may allow viral persistence despite immune responses and antiretroviral therapy. Measurements of infectious virus and viral RNA in plasma and of infectious virus, viral DNA and viral messenger RNA species in infected cells all suggest that HIV-1 replication continues throughout the course of infection. Uncertainty remains over what fraction of CD4+ T cells are infected and whether there are latent reservoirs for the virus. We show here that during the asymptomatic phase of infection there is an extremely low total body load of latently infected resting CD4+ T cells with replication-competent integrated provirus (<10(7) cells). The most prevalent form of HIV-1 DNA in resting and activated CD4+ T cells is a full-length, linear, unintegrated form that is not replication competent. The infection progresses even though at any given time in the lymphoid tissues integrated HIV-1 DNA is present in only a minute fraction of the susceptible populations, including resting and activated CD4+ T cells and macrophages.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency.

              Although it is presumed that the integration of HIV-1 into the genome of infected CD4+ T lymphocytes allows viral persistence, there has been little direct evidence that CD4+ T cells with integrated provirus function as a latent reservoir for HIV-1 in infected individuals. Using resting CD4+ T-cell populations of extremely high purity and a novel assay that selectively and unambiguously detects integrated HIV-1, we show that resting CD4+ T cells harbouring integrated provirus are present in some infected individuals. However, these cells do not accumulate within the circulating pool of resting CD4+ T cells in the early stages of HIV-1 infection and do not accumulate even after prolonged periods in long-term survivors of HIV-1 infection. These results suggest that because of viral cytopathic effects and/or host effector mechanisms, productively infected CD4+ T cells do not generally survive for long enough to revert to a resting memory state in vivo.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 06 2016
                December 06 2016
                December 06 2016
                November 21 2016
                : 113
                : 49
                : E7908-E7916
                Article
                10.1073/pnas.1617789113
                3e1b7e2e-86db-4fe2-bfe6-d3f13befb422
                © 2016

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article