Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression Profiling of Primary and Metastatic Ovarian Tumors Reveals Differences Indicative of Aggressive Disease

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Genes that mediate breast cancer metastasis to the brain.

          The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of genes periodically expressed in the human cell cycle and their expression in tumors.

            The genome-wide program of gene expression during the cell division cycle in a human cancer cell line (HeLa) was characterized using cDNA microarrays. Transcripts of >850 genes showed periodic variation during the cell cycle. Hierarchical clustering of the expression patterns revealed coexpressed groups of previously well-characterized genes involved in essential cell cycle processes such as DNA replication, chromosome segregation, and cell adhesion along with genes of uncharacterized function. Most of the genes whose expression had previously been reported to correlate with the proliferative state of tumors were found herein also to be periodically expressed during the HeLa cell cycle. However, some of the genes periodically expressed in the HeLa cell cycle do not have a consistent correlation with tumor proliferation. Cell cycle-regulated transcripts of genes involved in fundamental processes such as DNA replication and chromosome segregation seem to be more highly expressed in proliferative tumors simply because they contain more cycling cells. The data in this report provide a comprehensive catalog of cell cycle regulated genes that can serve as a starting point for functional discovery. The full dataset is available at http://genome-www.stanford.edu/Human-CellCycle/HeLa/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of TGFbeta in metastasis.

              The TGFbeta signaling pathway is conserved from flies to humans and has been shown to regulate such diverse processes as cell proliferation, differentiation, motility, adhesion, organization, and programmed cell death. Both in vitro and in vivo experiments suggest that TGFbeta can utilize these varied programs to promote cancer metastasis through its effects on the tumor microenvironment, enhanced invasive properties, and inhibition of immune cell function. Recent clinical evidence demonstrating a link between TGFbeta signaling and cancer progression is fostering interest in this signaling pathway as a therapeutic target. Anti-TGFbeta therapies are currently being developed and tested in pre-clinical studies. However, targeting TGFbeta carries a substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. Additionally, clinical and experimental results show that TGFbeta has diverse and often conflicting roles in tumor progression even within the same tumor types. The development of TGFbeta inhibitors for clinical use will require a deeper understanding of TGFbeta signaling, its consequences, and the contexts in which it acts.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                14 April 2014
                : 9
                : 4
                : e94476
                Affiliations
                [1 ]Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
                [2 ]Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
                [3 ]Center for Genomics and Proteomics, Brown University, Providence, Rhode Island, United States of America
                [4 ]Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
                [5 ]Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants’ Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
                [6 ]Department of Pathology, Women and Infants’ Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
                [7 ]Vancouver Prostate Centre, Vancouver, Canada
                [8 ]Institute for Life Sciences, University of Southampton, Southampton, England
                [9 ]Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
                Kinghorn Cancer Centre, Garvan Institute of Medical Research, Australia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ASB LB. Performed the experiments: AF DHM SV SM MS ASB. Analyzed the data: HTW JY BJR CC MS ASB LB PJSS. Contributed reagents/materials/analysis tools: JY BJR ASB. Wrote the paper: ASB.

                [¤]

                Current address: Stanford Women's Cancer Center, Stanford University School of Medicine, Palo Alto, California, United States of America

                Article
                PONE-D-13-54666
                10.1371/journal.pone.0094476
                3986100
                24732363
                b3d1498e-cfde-4001-83af-2e030a3547ab
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 January 2014
                : 16 March 2014
                Page count
                Pages: 9
                Funding
                This work was supported by the Brown University Center for Computational Molecular Biology (ASB), a seed award from the Brown University National Center of Excellence in Women's Health (ASB), an AARA supplement to NIH/NCRR grant 5P41RR001395 (PJSS), NIH2674-4/OHGB1623 LRP (LB), and a Career Award at the Scientific Interface from the Burroughs Wellcome Fund (BJR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Genome Expression Analysis
                Genetics
                Genomics
                Medicine and Health Sciences
                Oncology
                Basic Cancer Research
                Metastasis
                Cancers and Neoplasms
                Gynecological Tumors
                Ovarian Cancer
                Women's Health
                Obstetrics and Gynecology
                Gynecologic Cancers

                Uncategorized
                Uncategorized

                Comments

                Comment on this article