650
views
0
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      PHENIX: a comprehensive Python-based system for macromolecular structure solution.

      Acta Crystallographica Section D: Biological Crystallography
      Algorithms, Crystallography, X-Ray, methods, Models, Molecular, Software Design

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Structure validation by Calpha geometry: phi,psi and Cbeta deviation.

          Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage). Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A graphical user interface to the CCP4 program suite.

            CCP4i is a graphical user interface that makes running programs from the CCP4 suite simpler and quicker. It is particularly directed at inexperienced users and tightly linked to introductory and scientific documentation. It also provides a simple project-management system and visualization tools. The system is readily extensible and not specific to CCP4 software.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Improved Fourier coefficients for maps using phases from partial structures with errors

              R. Read (1986)
                Bookmark

                Author and article information

                Journal
                20124702
                2815670
                10.1107/S0907444909052925

                Chemistry
                Algorithms,Crystallography, X-Ray,methods,Models, Molecular,Software Design
                Chemistry
                Algorithms, Crystallography, X-Ray, methods, Models, Molecular, Software Design

                Comments

                Comment on this article