7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Optimal wrapping of liquid droplets with ultrathin sheets

      Nature materials
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Stress and Fold Localization in Thin Elastic Membranes

          Thin elastic membranes supported on a much softer elastic solid or a fluid deviate from their flat geometries upon compression. We demonstrate that periodic wrinkling is only one possible solution for such strained membranes. Folds, which involve highly localized curvature, appear whenever the membrane is compressed beyond a third of its initial wrinkle wavelength. Eventually the surface transforms into a symmetry-broken state with flat regions of membrane coexisting with locally folded points, reminiscent of a crumpled, unsupported membrane. We provide general scaling laws for the wrinkled and folded states and proved the transition with numerical and experimental supported membranes. Our work provides insight into the interfacial stability of such diverse systems as biological membranes such as lung surfactant and nanoparticle thin films.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Capillary wrinkling of floating thin polymer films.

            A freely floating polymer film, tens of nanometers in thickness, wrinkles under the capillary force exerted by a drop of water placed on its surface. The wrinkling pattern is characterized by the number and length of the wrinkles. The dependence of the number of wrinkles on the elastic properties of the film and on the capillary force exerted by the drop confirms recent theoretical predictions on the selection of a pattern with a well-defined length scale in the wrinkling instability. We combined scaling relations that were developed for the length of the wrinkles with those for the number of wrinkles to construct a metrology for measuring the elasticity and thickness of ultrathin films that relies on no more than a dish of fluid and a low-magnification microscope. We validated this method on polymer films modified by plasticizer. The relaxation of the wrinkles affords a simple method to study the viscoelastic response of ultrathin films.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stress focusing in elastic sheets

                Bookmark

                Author and article information

                Journal
                10.1038/nmat4397
                http://www.springer.com/tdm

                Comments

                Comment on this article