1,733
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scalable and accurate deep learning with electronic health records.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the patient's chart.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

          Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systemic inflammatory response syndrome criteria in defining severe sepsis.

            The consensus definition of severe sepsis requires suspected or proven infection, organ failure, and signs that meet two or more criteria for the systemic inflammatory response syndrome (SIRS). We aimed to test the sensitivity, face validity, and construct validity of this approach.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality.

              While evidence-based medicine has increasingly broad-based support in health care, it remains difficult to get physicians to actually practice it. Across most domains in medicine, practice has lagged behind knowledge by at least several years. The authors believe that the key tools for closing this gap will be information systems that provide decision support to users at the time they make decisions, which should result in improved quality of care. Furthermore, providers make many errors, and clinical decision support can be useful for finding and preventing such errors. Over the last eight years the authors have implemented and studied the impact of decision support across a broad array of domains and have found a number of common elements important to success. The goal of this report is to discuss these lessons learned in the interest of informing the efforts of others working to make the practice of evidence-based medicine a reality.
                Bookmark

                Author and article information

                Journal
                NPJ Digit Med
                NPJ digital medicine
                Springer Science and Business Media LLC
                2398-6352
                2398-6352
                2018
                : 1
                Affiliations
                [1 ] 1Google Inc, Mountain View, CA USA.
                [2 ] 2University of California, San Francisco, San Francisco, CA USA.
                [3 ] 3University of Chicago Medicine, Chicago, IL USA.
                [4 ] 4Stanford University, Stanford, CA USA.
                Article
                29
                10.1038/s41746-018-0029-1
                6550175
                31304302
                87002347-87ff-41af-be7c-7da0ee457265
                History

                Machine learning,Medical research
                Machine learning, Medical research

                Comments

                Comment on this article