34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Root-associated fungal microbiota of nonmycorrhizalArabis alpinaand its contribution to plant phosphorus nutrition

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Significance Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi and rely on this association to scavenge the macronutrient phosphorus (P) from soil. Arabis alpina thrives in P-limited alpine habitats, although, like all Brassicaceae species, it lacks the ability to establish an AM symbiosis. By studying the fungal microbiota associated with A. alpina roots we uncovered its association with a beneficial Helotiales fungus capable of promoting plant growth and P uptake, thereby facilitating plant adaptation to low-P environments.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Soil microorganisms mediating phosphorus availability update on microbial phosphorus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species

            Summary Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave–microbe interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

              Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 31 2017
                October 31 2017
                October 31 2017
                October 02 2017
                : 114
                : 44
                : E9403-E9412
                Article
                10.1073/pnas.1710455114
                95f024ec-4ffc-439f-81ef-433fa1e515e6
                © 2017

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article