8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insensitivity to Pain upon Adult-Onset Deletion of Nav1.7 or Its Blockade with Selective Inhibitors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strong human genetic evidence points to an essential contribution of the voltage-gated sodium channel Nav1.7 to pain sensation: loss of Nav1.7 function leads to congenital insensitivity to pain, whereas gain-of-function mutations in the SCN9A gene that encodes Nav1.7 cause painful neuropathies, such as inherited erythromelalgia, a syndrome characterized by episodic spontaneous pain. Selective Nav1.7 channel blockers thus hold promise as potential painkillers with improved safety and reduced unwanted side effects compared with existing therapeutics. To determine the maximum effect of a theoretically perfectly selective Nav1.7 inhibitor, we generated a tamoxifen-inducible KO mouse model enabling genetic deletion of Nav1.7 from adult mice. Electrophysiological recordings of sensory neurons from these mice following tamoxifen injection demonstrated the loss of Nav1.7 channel current and the resulting decrease in neuronal excitability of small-diameter neurons. We found that behavioral responses to most, but surprisingly not all, modalities of noxious stimulus are abolished following adult deletion of Nav1.7, pointing toward indications where Nav1.7 blockade should be efficacious. Furthermore, we demonstrate that isoform-selective acylsulfonamide Nav1.7 inhibitors show robust analgesic and antinociceptive activity acutely after a single dose in mouse pain models shown to be Nav1.7-dependent. All experiments were done with both male and female mice. Collectively, these data expand the depth of knowledge surrounding Nav1.7 biology as it relates to pain, and provide preclinical proof of efficacy that lays a clear path toward translation for the therapeutic use of Nav1.7-selective inhibitors in humans.

          SIGNIFICANCE STATEMENT Loss-of-function mutations in the sodium channel Nav1.7 cause congenital insensitivity to pain in humans, making Nav1.7 a top target for novel pain drugs. Targeting Nav1.7 selectively has been challenging, however, in part due to uncertainties in which rodent pain models are dependent on Nav1.7. We have developed and characterized an adult-onset Nav1.7 KO mouse model that allows us to determine the expected effects of a theoretically perfect Nav1.7 blocker. Importantly, many commonly used pain models, such as mechanical allodynia after nerve injury, appear to not be dependent on Nav1.7 in the adult. By defining which models are Nav1.7 dependent, we demonstrate that selective Nav1.7 inhibitors can approximate the effects of genetic loss of function, which previously has not been directly established.

          Related collections

          Author and article information

          Journal
          J Neurosci
          J. Neurosci
          jneuro
          jneurosci
          J. Neurosci
          The Journal of Neuroscience
          Society for Neuroscience
          0270-6474
          1529-2401
          21 November 2018
          : 38
          : 47
          : 10180-10201
          Affiliations
          [1] 1Departments of Neuroscience,
          [2] 2Pathology, and
          [3] 3Drug Metabolism & Pharmacokinetics, Genentech, South San Francisco, California 94080
          Author notes
          Correspondence should be addressed to either Dr. Shannon D. Shields or Dr. David H. Hackos, Neuroscience Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, shields.shannon@ 123456gene.com or hackos.david@ 123456gene.com

          Author contributions: S.D.S. and D.H.H. wrote the first draft of the paper; S.D.S., L.D., and D.H.H. edited the paper; S.D.S., L.D., O.F., and D.H.H. designed research; S.D.S., L.D., R.M.R., M.D., J.T., O.F., J.H.C., and D.H.H. performed research; O.F. and D.H.H. contributed unpublished reagents/analytic tools; S.D.S., L.D., R.M.R., M.D., J.T., O.F., J.H.C., and D.H.H. analyzed data; D.H.H. wrote the paper.

          *S.D.S., L.D., and R.M.R. contributed equally to this work.

          Author information
          https://orcid.org/0000-0002-8006-7103
          https://orcid.org/0000-0003-3457-7695
          Article
          PMC6596201 PMC6596201 6596201 1049-18
          10.1523/JNEUROSCI.1049-18.2018
          6596201
          30301756
          16c2ee92-b409-4611-a27b-ae7ea7d9ccc6
          Copyright © 2018 the authors 0270-6474/18/3810180-22$15.00/0
          History
          : 24 April 2018
          : 13 September 2018
          : 29 September 2018
          Categories
          Research Articles
          Neurobiology of Disease

          drug development,pain,tamoxifen,acylsulfonamide,Nav1.7,congenital insensitivity to pain

          Comments

          Comment on this article