120
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

      review-article
      Journal of Translational Medicine
      BioMed Central
      Cancer, Diabetes, DNMT, Epigenetics, FTO, Milk, miRNA-29, mTORC1, N6-Methyladenosine, Obesity, Transcriptome

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N 6 -methyladenosine (m 6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m 6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.

          Related collections

          Most cited references257

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biological properties of extracellular vesicles and their physiological functions

          In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase.

            Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role for DNA methylation in genomic imprinting.

              The paternal and maternal genomes are not equivalent and both are required for mammalian development. The difference between the parental genomes is believed to be due to gamete-specific differential modification, a process known as genomic imprinting. The study of transgene methylation has shown that methylation patterns can be inherited in a parent-of-origin-specific manner, suggesting that DNA methylation may play a role in genomic imprinting. The functional significance of DNA methylation in genomic imprinting was strengthened by the recent finding that CpG islands (or sites) in three imprinted genes, H19, insulin-like growth factor 2 (Igf-2), and Igf-2 receptor (Igf-2r), are differentially methylated depending on their parental origin. We have examined the expression of these three imprinted genes in mutant mice that are deficient in DNA methyltransferase activity. We report here that expression of all three genes was affected in mutant embryos: the normally silent paternal allele of the H19 gene was activated, whereas the normally active paternal allele of the Igf-2 gene and the active maternal allele of the Igf-2r gene were repressed. Our results demonstrate that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes.
                Bookmark

                Author and article information

                Contributors
                +49 5241 988060 , melnik@t-online.de
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                21 December 2015
                21 December 2015
                2015
                : 13
                : 385
                Affiliations
                Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
                Article
                746
                10.1186/s12967-015-0746-z
                4687119
                26691922
                f6f84dc1-d400-4b74-8053-d69dee327ff3
                © Melnik. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 September 2015
                : 4 December 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Medicine
                cancer,diabetes,dnmt,epigenetics,fto,milk,mirna-29,mtorc1,n6-methyladenosine,obesity,transcriptome
                Medicine
                cancer, diabetes, dnmt, epigenetics, fto, milk, mirna-29, mtorc1, n6-methyladenosine, obesity, transcriptome

                Comments

                Comment on this article