67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Overexpression of Fto leads to increased food intake and results in obesity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-wide association studies have identified SNPs within the human FTO gene that display a strong association with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh ~3kg more. Loss of function and/or expression of FTO in mice leads to increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or high fat diet. The increased body mass results primarily from increased food intake. Glucose intolerance develops with increased Fto expression on a high fat diet. This study provides the first direct evidence that increased Fto expression causes obesity in mice.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase.

          Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inactivation of the Fto gene protects from obesity.

            Several independent, genome-wide association studies have identified a strong correlation between body mass index and polymorphisms in the human FTO gene. Common variants in the first intron define a risk allele predisposing to obesity, with homozygotes for the risk allele weighing approximately 3 kilograms more than homozygotes for the low risk allele. Nevertheless, the functional role of FTO in energy homeostasis remains elusive. Here we show that the loss of Fto in mice leads to postnatal growth retardation and a significant reduction in adipose tissue and lean body mass. The leanness of Fto-deficient mice develops as a consequence of increased energy expenditure and systemic sympathetic activation, despite decreased spontaneous locomotor activity and relative hyperphagia. Taken together, these experiments provide, to our knowledge, the first direct demonstration that Fto is functionally involved in energy homeostasis by the control of energy expenditure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.

              Several newly generated mouse embryonic stem (ES) cell lines were tested for their ability to produce completely ES cell-derived mice at early passage numbers by ES cell tetraploid embryo aggregation. One line, designated R1, produced live offspring which were completely ES cell-derived as judged by isoenzyme analysis and coat color. These cell culture-derived animals were normal, viable, and fertile. However, prolonged in vitro culture negatively affected this initial totipotency of R1, and after passage 14, ES cell-derived newborns died at birth. However, one of the five subclones (R1-S3) derived from single cells at passage 12 retained the original totipotency and gave rise to viable, completely ES cell-derived animals. The total in vitro culture time of the sublines at the time of testing was equivalent to passage 24 of the original line. Fully potent early passage R1 cells and the R1-S3 subclone should be very useful not only for ES cell-based genetic manipulations but also in defining optimal in vitro culture conditions for retaining the initial totipotency of ES cells.
                Bookmark

                Author and article information

                Journal
                9216904
                2419
                Nat Genet
                Nat. Genet.
                Nature genetics
                1061-4036
                1546-1718
                20 October 2010
                14 November 2010
                December 2010
                01 June 2011
                : 42
                : 12
                : 1086-1092
                Affiliations
                [1 ]MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
                [2 ]Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
                [3 ]Center of Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50674 Cologne, Germany
                Author notes

                AUTHOR CONTRIBUTIONS

                CC, RDC and FMA planned the project and wrote the manuscript. CC, LM, and FM carried out the whole animal experiments. PMN, SW and GTB carried out the behavioural and circadian studies. JCB and CG provided overexpression vector design, construction and methods. LT and CC carried out the transgenic work.

                Article
                UKMS32984
                10.1038/ng.713
                3018646
                21076408
                27fc2404-b9aa-41f8-aef5-20429be1edd6

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Wellcome Trust :
                Award ID: 081219 || WT
                Funded by: Medical Research Council :
                Award ID: U.1426.00.009(61184) || MRC_
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article