45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation, Characterization and Application of a Molecularly Imprinted Polymer for Selective Recognition of Sulpiride

      Materials
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends.

          Molecularly imprinted polymers (MIPs) are synthetic polymers having a predetermined selectivity for a given analyte, or group of structurally related compounds, that make them ideal materials to be used in separation processes. In this sense, during past years a huge amount of papers have been published dealing with the use of MIPs as sorbents in solid-phase extraction, namely molecularly imprinted solid-phase extraction (MISPE). Although the majority of these papers were restricted to describe the use of different templates for different applications, several attempts proposing new alternatives to minimize the inherent drawbacks of the preparation and use of MIPs (i.e. template bleeding, tedious synthesis procedure, etc.) have been reported. Thus, this paper does not pretend to be a collection of MISPE-related papers but to give an overview on the significant attempts carried out during recent years to improve the performance of MIPs in solid-phase extraction. In addition, the use of MIPs packed in high performance liquid chromatography (HPLC) columns for the direct injection of crude sample extracts and the preparation of imprinted fibres for solid-phase microextraction will be also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecularly imprinted polymers: synthesis and characterisation.

            This short review aims to present, in clear English, a summary of the principal synthetic considerations pertaining to good practice in the polymerisation aspects of molecular imprinting, and is primarily aimed at researchers familiar with molecular imprinting methods but with little or no prior experience in polymer synthesis. It is our hope that this will facilitate researchers to plan their own syntheses of molecular imprints in a more logical and structured fashion, and to begin to appreciate the limitations of the present synthetic approaches in this molecularly complex area, as well as the scope for rationally designing improved imprinted materials in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecularly imprinted polymers for sample preparation: a review.

              In spite of the huge development of analytical instrumentation during last two decades, sample preparation is still nowadays considered the bottleneck of the whole analytical process. In this regard, efforts have been conducted towards the improvement of the selectivity during extraction and/or subsequent clean-up of sample extracts. Molecularly imprinted polymers (MIPs) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis and thus are excellent materials to provide selectivity to sample preparation. In the present review, the use of MIPs in solid-phase extraction and solid-phase microextraction as well as its recent incorporation to other extraction techniques such as matrix-solid phase dispersion and stir bar sorptive extraction, among others, is described. The advantages and drawbacks of each methodology as well as the future expected trends are discussed. Copyright 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                10.3390/ma10050475
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article