52
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      P2Y12 and P2Y13 receptors involved in ADPβs induced the release of IL-1β, IL-6 and TNF-α from cultured dorsal horn microglia.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P2 receptors have been implicated in the release of neurotransmitter and pro-inflammatory cytokines due to their response to neuroexcitatory substances in the microglia. Dorsal horn P2Y12 and P2Y13 receptors are involved in the development of pain behavior induced by peripheral nerve injury. However, it is not known whether P2Y12 and P2Y13 receptors activation is associated with the expression and the release of interleukin-1B (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) in cultured dorsal spinal cord microglia. For this reason, we examined the effects of ADPβs (ADP analog) on the expression and the release of IL-1β, IL-6, and TNF-α.

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Altered cytokine production in mice lacking P2X(7) receptors.

          The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neuropathic pain and cytokines: current perspectives

            Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia.

              ATP is an important regulator of microglia and its effects on microglial cytokine release are currently discussed as important contributors in a variety of brain diseases. We here analyzed the effects of ATP on the production of six inflammatory mediators (IL-6, IL-10, CCL2, IFN-γ, TNF-α, and IL-12p70) in cultured mouse primary microglia. Stimulation of P2X7 receptor by ATP (1 mM) or BzATP (500 µM) evoked the mRNA expression and release of proinflammatory cytokines IL-6, TNF-α, and the chemokine CCL2 in WT cells but not in P2X7(-/-) cells. The effects of ATP and BzATP were inhibited by the nonselective P2 receptor antagonists PPADs and suramin. Various selective P2X7 receptor antagonists blocked the P2X7-dependent release of IL-6 and CCL2, but, surprisingly, had no effect on BzATP-induced release of TNF-α in microglia. Calcium measurements confirmed that P2X7 is the main purine receptor activated by BzATP in microglia and showed that all P2X7 antagonists were functional. It is also presented that pannexin-1 hemichannel function and potential P2X4/P2X7 heterodimers are not involved in P2X7-dependent release of IL-6, CCL2, and TNF-α in microglia. How P2X7-specific antagonists only affect P2X7-dependent IL-6 and CCL2 release, but not TNF-α release is at the moment unclear, but indicates that the P2X7-dependent release of cytokines in microglia is differentially regulated. Copyright © 2014 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                Journal of pain research
                Informa UK Limited
                1178-7090
                1178-7090
                2017
                : 10
                Affiliations
                [1 ] Department of Physiology, Zunyi Medical College, Guizhou, China.
                Article
                jpr-10-1755
                10.2147/JPR.S137131
                5536317
                28794655
                f673c7d9-27a3-4ac4-a6ff-39ee7e5750e4
                History

                NF-kB,P2 receptor,glial activation,p38 mitogen-activated protein kinase

                Comments

                Comment on this article