31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism.

      Neuropsychopharmacology
      Acoustic Stimulation, Animals, Anticonvulsants, toxicity, Attention, drug effects, Autistic Disorder, chemically induced, psychology, Behavior, Animal, Discrimination (Psychology), Endorphins, physiology, Exploratory Behavior, Female, Motor Activity, Nociceptors, Pain Measurement, Postural Balance, Pregnancy, Prenatal Exposure Delayed Effects, Rats, Rats, Wistar, Reflex, Startle, Smell, Stereotyped Behavior, Touch, Valproic Acid, Weight Gain

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism is a severe behavioral disorder characterized by pervasive impairments in social interactions, deficits in verbal and nonverbal communication, and stereotyped, repetitive patterns of behaviors and interests. Recently, a new rodent model of autism was created by exposure of rat fetuses to valproic acid (VPA) on the 12.5th day of gestation (VPA rats). The model has striking anatomical, pathological, and etiological similarities to human data; however, it has not been characterized behaviorally. In order to determine if VPA rats present behavioral aberrations observed in autism, their behavior was extensively evaluated in a battery of tests. The results of the present experiments demonstrate that VPA rats exhibit: (1) lower sensitivity to pain and higher sensitivity to nonpainful stimuli, (2) diminished acoustic prepulse inhibition, (3) locomotor and repetitive/stereotypic-like hyperactivity combined with lower exploratory activity, and (4) decreased number of social behaviors and increased latency to social behaviors. In addition, VPA rats showed delayed maturation, lower body weight, delayed motor development, and attenuated integration of a coordinated series of reflexes, delayed nest-seeking response mediated by olfactory system, and normal negative geotaxis. Interestingly, all behavioral aberrations described in this paper appear before puberty, which could distinguish the VPA rat model of autism from other animal models of neurodevelopmental disorders, especially rodent models of schizophrenia. Our results bring further support to validity of the proposed VPA animal model of autism, suggesting similarities between the observed pattern of behavioral alterations in VPA rats and features of disturbed behavior in autistic patients.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Autism as a strongly genetic disorder: evidence from a British twin study

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histoanatomic observations of the brain in early infantile autism.

            Early infantile autism is a behaviorally defined syndrome that is often associated with abnormalities on neurologic examination and seizures. We report on the brain of a 29-year-old autistic man as compared with that of an age- and sex-matched normal control, using gapless sections of whole brain. Abnormalities were found in the hippocampus, subiculum, entorhinal cortex, septal nuclei, mamillary body, selected nuclei of the amygdala, neocerebellar cortex, roof nuclei of the cerebellum, and inferior olivary nucleus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei.

              The underlying brain injury that leads to autism has been difficult to identify. The diagnostic criteria of the disease are not readily associated with any brain region or system, nor are they mimicked by vascular accidents, tumors, or degenerative neurological diseases occurring in adults. Fortuitously, a recent report of autism induced by thalidomide exposure provides evidence that the disease originates by an injury at the time of closure of the neural tube. The human data suggest that the initiating lesion includes the motor cranial nerve nuclei. To test this hypothesis, we first examined motor nuclei in the brainstem of a human autistic case. The autopsy brain exhibited near-complete absence of the facial nucleus and superior olive along with shortening of the brainstem between the trapezoid body and the inferior olive. A similar deficit has been reported in Hoxa-1 gene knockout mice in which pattern formation of the hindbrain is disrupted during neurulation. Alternatively, exposure to antimitotic agents just after neural tube closure could produce the observed pattern of deficits. Thus, the lesions observed in the autopsy case appear to match those predicted by the thalidomide cases in both time of origin and central nervous system (CNS) location. To produce similar brain lesions experimentally, we exposed rat embryos to valproic acid, a second teratogen newly linked to autism. Dams received 350 mg/kg of valproic acid (VPA) on day 11.5 (the day of neural tube closure), day 12, or day 12.5 gestation. Each treatment significantly reduced the number of motor neurons counted in matched sections of the earliest-forming motor nuclei (V, XII), and progressively later exposures affected the VIth and IIIrd cranial nerve nuclei. All treatments spared the facial nucleus, which forms still later. Counts from the mesencephalic nucleus of trigeminal, the dorsal motor nucleus of the vagus, and the locus ceruleus were not affected by exposure to VPA, even though these nuclei form during the period when exposure occurred. Despite its effects on the motor nuclei, valproic acid exposure did not alter the further development of the brain in any obvious way. Treated animals were robust and had no external malformations. The autopsy data and experimental data from rats confirm that CNS injuries occurring during or just after neural tube closure can lead to a selective loss of neurons derived from the basal plate of the rhombencephalon. The results add two new lines of evidence that place the initiating injury for autism around the time of neural tube closure.
                Bookmark

                Author and article information

                Comments

                Comment on this article