31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn

      review-article
      Molecular Pain
      SAGE Publications
      Itch, neuropeptide, pain, spinal cord

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron populations, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a dramatic improvement in our understanding of somatosensory processing at the spinal level.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

          Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat.

            We attempted to develop an experimental animal model for peripheral neuropathic pain. Under sodium pentobarbital anesthesia, both the L5 and L6 spinal nerves (group 1) or the L5 spinal nerve alone (group 2) of one side of the rat were tightly ligated. For comparison, a parallel study was conducted with another group of rats (group 3) which received a partial tight sciatic nerve ligation, a paradigm developed previously as a neuropathy model. Withdrawal latencies to application of radiant heat to the foot were tested for the next 16 weeks in all 3 groups. Sensitivity of the hind paw to mechanical stimulation was tested with von Frey filaments. The general behavior of each rat was noted during the entire test period. Results suggested that the surgical procedure in all 3 groups produced a long-lasting hyperalgesia to noxious heat (at least 5 weeks) and mechanical allodynia (at least 10 weeks) of the affected foot. In addition, there were behavioral signs of the presence of spontaneous pain in the affected foot. Therefore, we believe we have developed an experimental animal model for peripheral neuropathy using tight ligations of spinal nerves. The model manifests the symptoms of human patients with causalgia and is compatible with a previously developed neuropathy model. The present model has two unique features. First, the surgical procedure is stereotyped. Second, the levels of injured and intact spinal segments are completely separated, allowing independent experimental manipulations of the injured and intact spinal segments in future experiments to answer questions regarding mechanisms underlying causalgia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd.

              The brain receives sensory input from diverse peripheral tissues, including the skin, the body's largest sensory organ. Using genetically encoded axonal tracers expressed from the Mrgprd locus, we identify a subpopulation of nonpeptidergic, nociceptive neurons that project exclusively to the skin, and to no other peripheral tissue examined. Surprisingly, Mrgprd(+) innervation is restricted to the epidermis and absent from specialized sensory structures. Furthermore, Mrgprd(+) fibers terminate in a specific layer of the epidermis, the stratum granulosum. This termination zone is distinct from that innervated by most CGRP(+) neurons, revealing that peptidergic and nonpeptidergic epidermal innervation is spatially segregated. The central projections deriving from these distinct epidermal innervation zones terminate in adjacent laminae in the dorsal spinal cord. Thus, afferent input from different layers of the epidermis is conveyed by topographically segregated sensory circuits, suggesting that at least some aspects of sensory information processing may be organized along labeled lines.
                Bookmark

                Author and article information

                Journal
                Mol Pain
                Mol Pain
                MPX
                spmpx
                Molecular Pain
                SAGE Publications (Sage CA: Los Angeles, CA )
                1744-8069
                01 February 2017
                2017
                : 13
                : 1744806917693003
                Affiliations
                [1-1744806917693003]Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
                Author notes
                [*]Andrew J Todd, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Email: Andrew.Todd@ 123456glasgow.ac.uk
                Article
                10.1177_1744806917693003
                10.1177/1744806917693003
                5315367
                226cc55c-3c6a-4226-87b1-6cbf9f21bf67
                © The Author(s) 2017

                This article is distributed under the terms of the Creative Commons Attribution 3.0 License ( http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 13 December 2016
                : 16 December 2016
                Categories
                Review Article
                Custom metadata
                January-December 2017

                Molecular medicine
                itch,neuropeptide,pain,spinal cord
                Molecular medicine
                itch, neuropeptide, pain, spinal cord

                Comments

                Comment on this article