31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends

      Current Biology
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Actin, a central player in cell shape and movement.

          The protein actin forms filaments that provide cells with mechanical support and driving forces for movement. Actin contributes to biological processes such as sensing environmental forces, internalizing membrane vesicles, moving over surfaces, and dividing the cell in two. These cellular activities are complex; they depend on interactions of actin monomers and filaments with numerous other proteins. Here, we present a summary of the key questions in the field and suggest how those questions might be answered. Understanding actin-based biological phenomena will depend on identifying the participating molecules and defining their molecular mechanisms. Comparisons of quantitative measurements of reactions in live cells with computer simulations of mathematical models will also help generate meaningful insights.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of the actin cytoskeleton in cancer cell migration and invasion.

            Malignant cancer cells utilize their intrinsic migratory ability to invade adjacent tissues and the vasculature, and ultimately to metastasize. Cell migration is the sum of multi-step processes initiated by the formation of membrane protrusions in response to migratory and chemotactic stimuli. The driving force for membrane protrusion is localized polymerization of submembrane actin filaments. Recently, several studies revealed that molecules that link migratory signals to the actin cytoskeleton are upregulated in invasive and metastatic cancer cells. In this review, we summarize recent progress on molecular mechanisms of formation of invasive protrusions used by tumor cells, such as lamellipodia and invadopodia, with regard to the functions of key regulatory proteins of the actin cytoskeleton; WASP family proteins, Arp2/3 complex, LIM-kinase, cofilin, and cortactin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin.

              ADF/cofilins are key regulators of actin dynamics during cellular motility, yet their precise role and mechanism of action are shrouded in ambiguity. Direct observation of actin filaments by evanescent wave microscopy showed that cofilins from fission yeast and human do not increase the rate that pointed ends of actin filaments shorten beyond the rate for ADP-actin subunits, but both cofilins inhibit elongation and subunit dissociation at barbed ends. Direct observation also showed that cofilins from fission yeast, Acanthamoeba, and human sever actin filaments optimally at low-cofilin binding densities well below their K(d)s, but not at high binding densities. High concentrations of cofilin nucleate actin assembly. Thus, the action of cofilins in cells will depend on the local concentration of active cofilins: low concentrations favor severing, whereas high concentrations favor nucleation. These results establish a clear paradigm for actin turnover by cofilin in cells.
                Bookmark

                Author and article information

                Journal
                10.1016/j.cub.2017.05.048
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article