259
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution

      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-molecule dynamics of enhanceosome assembly in embryonic stem cells.

            Enhancer-binding pluripotency regulators (Sox2 and Oct4) play a seminal role in embryonic stem (ES) cell-specific gene regulation. Here, we combine in vivo and in vitro single-molecule imaging, transcription factor (TF) mutagenesis, and ChIP-exo mapping to determine how TFs dynamically search for and assemble on their cognate DNA target sites. We find that enhanceosome assembly is hierarchically ordered with kinetically favored Sox2 engaging the target DNA first, followed by assisted binding of Oct4. Sox2/Oct4 follow a trial-and-error sampling mechanism involving 84-97 events of 3D diffusion (3.3-3.7 s) interspersed with brief nonspecific collisions (0.75-0.9 s) before acquiring and dwelling at specific target DNA (12.0-14.6 s). Sox2 employs a 3D diffusion-dominated search mode facilitated by 1D sliding along open DNA to efficiently locate targets. Our findings also reveal fundamental aspects of gene and developmental regulation by fine-tuning TF dynamics and influence of the epigenome on target search parameters. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Super-Resolution Video Microscopy of Live Cells by Structured Illumination

              Structured-illumination microscopy can double the resolution of the wide-field fluorescence microscope, but has previously been too slow for dynamic live imaging. Here we demonstrate a high-speed SIM that is capable of 100 nm resolution at frame rates up to 11 Hz for several hundred time frames. We demonstrate the microscope by video imaging of tubulin and kinesin dynamics in living Drosophila S2 cells in the total internal reflection (TIRF) mode.
                Bookmark

                Author and article information

                Journal
                10.1126/science.1257998

                Comments

                Comment on this article