106
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of extended release GLP-1 receptor agonist therapy versus sitagliptin in the management of type 2 diabetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exenatide once weekly (EQW), the first glucose-lowering agent for type 2 diabetes that is dosed one time per week, contains exenatide encapsulated in microspheres of a dissolvable matrix, which release active agent slowly and continuously into the circulation following subcutaneous injection. In two direct head-to-head comparisons, EQW resulted in better long-term glucose control, greater reductions in fasting plasma glucose, and more significant weight loss than sitagliptin. In other trials, glucose-lowering effects of EQW compared favorably with those of metformin, pioglitazone, and basal insulin. Patients on EQW exhibited a higher incidence of nausea than those on sitagliptin, although gastrointestinal adverse events occurred primarily during the first 6–8 weeks of therapy and declined thereafter. EQW was also associated with a lower incidence of nausea than two other glucagon-like peptide-1 receptor agonists, exenatide twice daily and liraglutide. Mild hypoglycemic episodes were uncommon with EQW, although risk of hypoglycemia increased in combination with sulfonylureas. When choosing between EQW and a dipeptidyl peptidase-4 (DPP-4) inhibitor, such as sitagliptin, clinicians and patients should consider the differences between the two medications in terms of glucose control (EQW superior to DPP-4 inhibitors), weight control (EQW superior to DPP-4 inhibitors), gastrointestinal tolerability during treatment initiation (EQW inferior to DPP-4 inhibitors), and mode of administration (once-weekly subcutaneous administration versus once-daily oral administration).

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of incretin hormones.

          Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote beta cell proliferation and inhibit apoptosis, leading to expansion of beta cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies.

            Glucagon-like peptide-1-based therapy is gaining widespread use for type 2 diabetes, although there are concerns about risks for pancreatitis and pancreatic and thyroid cancers. There are also concerns that dipeptidyl peptidase-4 inhibitors could cause cancer, given their effects on immune function. We examined the US Food and Drug Administration's database of reported adverse events for those associated with the dipeptidyl peptidase-4 inhibitor sitagliptin and the glucagon-like peptide-1 mimetic exenatide, from 2004-2009; data on adverse events associated with 4 other medications were compared as controls. The primary outcomes measures were rates of reported pancreatitis, pancreatic and thyroid cancer, and all cancers associated with sitagliptin or exenatide, compared with other therapies. Use of sitagliptin or exenatide increased the odds ratio for reported pancreatitis 6-fold as compared with other therapies (P<2×10(-16)). Pancreatic cancer was more commonly reported among patients who took sitagliptin or exenatide as compared with other therapies (P<.008, P<9×10(-5)). All other cancers occurred similarly among patients who took sitagliptin compared with other therapies (P=.20). These data are consistent with case reports and animal studies indicating an increased risk for pancreatitis with glucagon-like peptide-1-based therapy. The findings also raise caution about the potential long-term actions of these drugs to promote pancreatic cancer. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Incretin-based therapies for type 2 diabetes mellitus.

              Incretin-based drugs, such as glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase 4 inhibitors, are now routinely used to treat type 2 diabetes mellitus. These agents regulate glucose metabolism through multiple mechanisms, their use is associated with low rates of hypoglycemia, and they either do not affect body weight (dipeptidyl peptidase 4 inhibitors), or promote weight loss (glucagon-like peptide-1 receptor agonists). The success of exenatide and sitagliptin, the first therapies in their respective drug classes to be based on incretins, has fostered the development of multiple new agents that are currently in late stages of clinical development or awaiting approval. This Review highlights our current understanding of the mechanisms of action of incretin-based drugs, with an emphasis on the emerging clinical profile of new agents.
                Bookmark

                Author and article information

                Journal
                Diabetes Metab Syndr Obes
                Diabetes Metab Syndr Obes
                Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
                Dove Medical Press
                1178-7007
                2013
                22 November 2013
                : 6
                : 435-444
                Affiliations
                [1 ]Clinical Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
                [2 ]Amylin Pharmaceuticals, LLC, San Diego, CA, USA
                Author notes
                Correspondence: Mark W Stolar, Northwestern Internists, Ltd., 676 North St. Clair Street, Suite 415, Chicago, IL 60611, USA, Tel +1 312 335 1133, Fax +1 312 335 9774, Email stolar_p@ 123456nwinternist.com
                Article
                dmso-6-435
                10.2147/DMSO.S48837
                3840776
                24285927
                001dcb41-80c1-4de0-884a-5ca9980185b9
                © 2013 Stolar et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Endocrinology & Diabetes
                exenatide,glucagon-like peptide 1,dipeptidyl peptidase-4 inhibitors

                Comments

                Comment on this article