3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of class I HDACs preserves hair follicle inductivity in postnatal dermal cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Induction of new hair follicles (HFs) may be an ultimate treatment goal for alopecia; however, functional cells with HF inductivity must be expanded in bulk for clinical use. In vitro culture conditions are completely different from the in vivo microenvironment. Although fetal and postnatal dermal cells (DCs) have the potential to induce HFs, they rapidly lose this HF inductivity during culture, accompanied by a drastic change in gene expression. This suggests that epigenetic regulation may be involved. Of the various histone deacetylases (HDACs), Class I HDACs are noteworthy because they are ubiquitously expressed and have the strongest deacetylase activity. This study revealed that DCs from postnatal mice rapidly lose HF inductivity and that this reduction is accompanied by a significant decrease in histone H3 acetylation. However, MS-275, an inhibitor of class I HDACs, preserves HF inductivity in DCs during culture, increasing alkaline phosphatase activity and upregulating HF inductive genes such as BMP4, HEY1, and WIF1. In addition, the inhibition of class I HDACs activates the Wnt signaling pathway, the most well-described molecular pathway in HF development, via increased histone H3 acetylation within the promoter region of the Wnt transcription factor LEF1. Our results suggest that class I HDACs could be a potential target for the neogenesis of HFs.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct fibroblast lineages determine dermal architecture in skin development and repair

          Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibers of the extracellular matrix (ECM) 1 . Even within a single tissue fibroblasts exhibit remarkable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle (APM), which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesise the bulk of the fibrillar ECM, and the pre-adipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialisation. Epidermal beta-catenin activation stimulates expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles 2-4 . They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Erasers of histone acetylation: the histone deacetylase enzymes.

            Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD(+)-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases.

              Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
                Bookmark

                Author and article information

                Contributors
                sj.jo@snu.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 December 2021
                15 December 2021
                2021
                : 11
                : 24056
                Affiliations
                [1 ]GRID grid.31501.36, ISNI 0000 0004 0470 5905, Department of Dermatology, , Seoul National University College of Medicine, ; Seoul, Republic of Korea
                [2 ]GRID grid.412484.f, ISNI 0000 0001 0302 820X, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, , Seoul National University Hospital, ; Seoul, Republic of Korea
                [3 ]GRID grid.31501.36, ISNI 0000 0004 0470 5905, Institute of Human-Environment Interface Biology, Medical Research Center, , Seoul National University, ; Seoul, Republic of Korea
                [4 ]GRID grid.31501.36, ISNI 0000 0004 0470 5905, Department of Biomedical Sciences, , Seoul National University College of Medicine, ; Seoul, Republic of Korea
                Article
                3508
                10.1038/s41598-021-03508-0
                8674223
                34911993
                00303a96-5d82-438d-98bf-285013deb494
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 August 2021
                : 3 December 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: 2020R1F1A1052974
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cell biology,stem cells
                Uncategorized
                cell biology, stem cells

                Comments

                Comment on this article