9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of ageing on the mechanical properties of the silk of the bridge spider Larinioides cornutus (Clerck, 1757)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spider silk is regarded as one of the best natural polymer fibers especially in terms of low density, high tensile strength and high elongation until breaking. Since only a few bio-engineering studies have been focused on spider silk ageing, we conducted nano-tensile tests on the vertical naturally spun silk fibers of the bridge spider Larinioides cornutus (Clerck, 1757) (Arachnida, Araneae) to evaluate changes in the mechanical properties of the silk (ultimate stress and strain, Young’s modulus, toughness) over time. We studied the natural process of silk ageing at different time intervals from spinning (20 seconds up to one month), comparing silk fibers spun from adult spiders collected in the field. Data were analyzed using Linear Mixed Models. We detected a positive trend versus time for the Young’s modulus, indicating that aged silks are stiffer and possibly less effective in catching prey. Moreover, we observed a negative trend for the ultimate strain versus time, attesting a general decrement of the resistance force. These trends are interpreted as being due to the drying of the silk protein chains and the reorientation among the fibers.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular nanosprings in spider capture-silk threads.

          Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads from Araneus, an ecribellate orb-weaving spider. The major protein of these threads is flagelliform protein, a variety of silk fibroin. We present models for molecular and supramolecular structures of flagelliform protein, derived from amino acid sequences, force spectroscopy (molecular pulling) and stretching of bulk capture web. Pulling on molecules in capture-silk fibres from Araneus has revealed rupture peaks due to sacrificial bonds, characteristic of other self-healing biomaterials. The overall force changes are exponential for both capture-silk molecules and intact strands of capture silk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.

            Orb-web weaving spiders rely on their aerial nets to entrap flying prey. A key mechanical feature of orb-web design is the high elasticity of the capture spiral. We report the cloning of substantial cDNA for flagelliform gland silk protein, which forms the core fiber of the catching spiral. Like all silks, the flagelliform protein is composed largely of iterated sequences. The dominant repeat of this protein is Gly-Pro-Gly-Gly-X, which can appear up to 63 times in tandem arrays. This motif likely forms Pro2-Gly3 type II beta-turns and the resulting series of concatenated beta-turns are thought to form a beta-spiral. We propose that this spring-like helix is the basis for the elasticity of silk. The variable fifth position of the motif (X) is occupied by a small subset of residues (Ala, Ser, Tyr, Val). Moreover, these X amino acids occur in specific patterns throughout the repeats. This ordered variation strongly suggests that with hydration, the beta-spirals form hydrogen-bonded networks that increase the elasticity of flagelliform silk. The self-assembly of flagelliform protein monomers into silk fibers may be promoted by beta-spiral/beta-spiral interactions. Additionally, the other two motifs in the flagelliform protein, Gly-Gly-X and a spacer that disrupts the glycine-rich regions, may contribute to the alignment of monomers into fibers. The flagelliform protein cDNA was compared to the other members of the spider silk gene family. We show that all spider silk proteins can be characterized as sets of shared structural modules. The occurrence of these modules among the proteins is inconsistent with the phylogenetic relationships inferred from the C-terminal regions. This observation, along with the high level of variation among individual flagelliform protein repeats, but striking lack of such variation in the other silk proteins, suggests that unusual homogenization processes are involved in silk protein evolution. Copyright 1998 Academic Press Limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relationships between supercontraction and mechanical properties of spider silk.

              Typical spider dragline silk tends to outperform other natural fibres and most man-made filaments. However, even small changes in spinning conditions can have large effects on the mechanical properties of a silk fibre as well as on its water uptake. Absorbed water leads to significant shrinkage in an unrestrained dragline fibre and reversibly converts the material into a rubber. This process is known as supercontraction and may be a functional adaptation for the silk's role in the spider's web. Supercontraction is thought to be controlled by specific motifs in the silk proteins and to be induced by the entropy-driven recoiling of molecular chains. In analogy, in man-made fibres thermal shrinkage induces changes in mechanical properties attributable to the entropy-driven disorientation of 'unfrozen' molecular chains (as in polyethylene terephthalate) or the 'broken' intermolecular hydrogen bonds (as in nylons). Here we show for Nephila major-ampullate silk how in a biological fibre the spinning conditions affect the interplay between shrinkage and mechanical characteristics. This interaction reveals design principles linking the exceptional properties of silk to its molecular orientation.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 May 2016
                2016
                : 6
                : 24699
                Affiliations
                [1 ]Laboratory of Bio-inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento , Via Mesiano 77, 38123 Trento, Italy
                [2 ]Laboratory of Ecology and Terrestrial Ecosystems, Department of Life Science and Systems Biology, University of Torino , Via Accademia Albertina, 13, 10123 Torino, Italy
                [3 ]Centre of Materials and Microsystems, Bruno Kessler Foundation , via Santa Croce 77, 38122 Trento, Italy
                [4 ]School of Engineering and Materials Science, Queen Mary University , Mile End Rd, London E1 4NS, UK
                Author notes
                Article
                srep24699
                10.1038/srep24699
                4860589
                27156712
                00a5086d-e37b-4a61-8413-e46892b6b5a6
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 13 July 2015
                : 23 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article