1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioinformatics Method Was Used to Analyze the Highly Expressed Gene FAM83A of Breast Cancer in Young Women

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Preliminary analysis of breast cancer related to unknown functional gene FAM83A through bioinformatics knowledge to inform further experimental studies. Select high expression genes for breast cancer and use bioinformatics methods to predict the biological function of FAM83A.

          Methods

          Genes with significant differences in expression between breast tumors and normal breast tissue libraries were selected from CGAP's SAGE Digital Gene Expression Displayer (DGED) database. An unknown functional gene, FAM83A, which is highly expressed in breast cancer, was screened. We performed an analysis of the gene structure, subcellular localization, physicochemical properties of the encoding products, functional sites, protein structure, and functional domains.

          Results

          Through SAGE DGED, a total of 185 genes with expression differences were found. The structure and function of FAM83A have ideal predictions, and it is generally determined that this gene encodes a nuclear protein with a nucleoprotein. The active site of PLDc and the functional domain of DUF1669 can be involved in signal transduction and gene expression regulation in tumorigenesis and metastasis. Digital gene representation of the Tumor Genome Project Data Library was used to select differentially expressed genes in breast cancer tissue and breast benign tumor tissue.

          Conclusion

          Studies show that FAM83A is a potential research target associated with tumorigenesis and metastasis. Initial tests confirmed the expression of this gene. Lay a solid foundation for further research learning. FAM83A is a highly expressed gene in breast cancer and can serve as a target for studying molecular mechanisms in breast cancer.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Drug Delivery Based on Stimuli-Responsive Injectable Hydrogels for Breast Cancer Therapy: A Review

          Breast cancer is the most common and biggest health threat for women. There is an urgent need to develop novel breast cancer therapies to overcome the shortcomings of conventional surgery and chemotherapy, which include poor drug efficiency, damage to normal tissues, and increased side effects. Drug delivery systems based on injectable hydrogels have recently gained remarkable attention, as they offer encouraging solutions for localized, targeted, and controlled drug release to the tumor site. Such systems have great potential for improving drug efficiency and reducing the side effects caused by long-term exposure to chemotherapy. The present review aims to provide a critical analysis of the latest developments in the application of drug delivery systems using stimuli-responsive injectable hydrogels for breast cancer treatment. The focus is on discussing how such hydrogel systems enhance treatment efficacy and incorporate multiple breast cancer therapies into one system, in response to multiple stimuli, including temperature, pH, photo-, magnetic field, and glutathione. The present work also features a brief outline of the recent progress in the use of tough hydrogels. As the breast undergoes significant physical stress and movement during sporting and daily activities, it is important for drug delivery hydrogels to have sufficient mechanical toughness to maintain structural integrity for a desired period of time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mapping Intellectual Structures and Research Hotspots of Triple Negative Breast Cancer: A Bibliometric Analysis

            Background Triple negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype with a poor prognosis due to its extremely aggressive nature and lack of effective treatment options. This study aims to summarize the current hotspots of TNBC research and evaluate the TNBC research trends, both qualitatively and quantitatively. Methods Scientific publications of TNBC-related studies from January 1, 2010 to October 17, 2020 were obtained from the Web of Science database. The BICOMB software was used to obtain the high-frequency keywords layout. The gCLUTO was used to produce a biclustering analysis on the binary matrix of word-paper. The co-occurrence and collaboration analysis between authors, countries, institutions, and keywords were performed by VOSviewer software. Keyword burst detection was performed by CiteSpace. Results A total of 12,429 articles related to TNBC were identified. During 2010-2020, the most productive country/region and institution in TNBC field was the USA and The University of Texas MD Anderson Cancer Center, respectively. Cancer Research, Journal of Clinical Oncology, and Annals of Oncology were the first three periodicals with maximum publications in TNBC research. Eight research hotspots of TNBC were identified by co-word analysis. In the core hotspots, research on neoadjuvant chemotherapy, paclitaxel therapy, and molecular typing of TNBC is relatively mature. Research on immunotherapy and PARP inhibitor for TNBC is not yet mature but is the current focus of this field. Burst detection of keywords showed that studies on TNBC proteins and receptors, immunotherapy, target, and tumor cell migration showed bursts in recent three years. Conclusion The current study revealed that TNBC studies are growing. Attention should be paid to the latest hotspots, such as immunotherapy, PARP inhibitors, target, and TNBC proteins and receptors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ZBTB28 inhibits breast cancer by activating IFNAR and dual blocking CD24 and CD47 to enhance macrophages phagocytosis

                Bookmark

                Author and article information

                Contributors
                Journal
                Appl Bionics Biomech
                Appl Bionics Biomech
                ABB
                Applied Bionics and Biomechanics
                Hindawi
                1176-2322
                1754-2103
                2022
                29 March 2022
                : 2022
                : 5358030
                Affiliations
                1The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
                2Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
                3Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China
                Author notes

                Academic Editor: Fahd Abd Algalil

                Author information
                https://orcid.org/0000-0003-3423-772X
                Article
                10.1155/2022/5358030
                8983250
                00bdf532-cc47-4182-8e3d-15a8df192c07
                Copyright © 2022 Yongzhe Tang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 January 2022
                : 5 March 2022
                : 8 March 2022
                Funding
                Funded by: Shanghai Municipal Key Clinical Specialty
                Award ID: shslczdzk06302
                Funded by: Shanghai Jiao Tong University
                Award ID: YG2019QNA09
                Funded by: Interdisciplinary Program
                Categories
                Research Article

                Comments

                Comment on this article